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Recall stochastic programming

We view both the model training and testing problems as

minx F(x) = E[f(x; ξ)]︸ ︷︷ ︸
expected risk, popular risk, …

ξ: training or testing data in ML problems
suppose f(·; ξ) is convex for every ξ (and hence F(·) is convex)
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Example: empirical risk minimization

Let {ai, yi}n
i=1 be n random samples, and consider

min
x

F(x) := 1
n

n∑
i=1

f(x; {ai, yi})︸ ︷︷ ︸
empirical risk

e.g. quadratic loss f(x; {ai, yi}) = (a⊤
i x − yi)2.

If one draws index j ∼ Unif(1, . . . , n) uniformly at random, then

F(x) = Ej[f(x; {aj, yj})]

which is the model training problem we aim to tackle.
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Compare GD, SGD and mini-batch SGD trajectories
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Tradeoffs in large and small stepsizes

Small η converges slowly to a low floor, moderate η balances speed and
floor, large η drops fast but stabilizes at a higher floor.
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Convergence with diminishing stepsizes

Theorem 2 (Strong convexity and diminishing stepsizes)

Suppose F is µ-strongly convex, and (2) holds with cg = 0. If
ηt =

θ
t+1 for some θ > 1

2µ , then SGD (1) achieves

E[||xt − x∗||22] ≤
cθ

t + 1

where cθ = max

{
2θ2σ2

g
2µθ−1 , ||x0 − x∗||22

}
.

convergence rate O(1/t) with diminishing stepsize ηt ≈ 1/t
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Simulations of SGD with diminishing stepsizes

The dashed curve is the theoretical cθ
t+1 bound; the solid line is the

empirical mean-squared error.
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Proof of Theorem 2

Using the SGD update rule, we have (compare with GD proof steps)

||xt+1 − x∗||22 = ||xt − ηtg(xt; ξt)− x∗(+ηtg(x∗; ξt))?||22
= ||xt − x∗||22 − 2ηt(xt − x∗)⊤g(xt; ξt) + η2

t ||g(xt; ξt)||22 (⋆)

Since xt is independent of ξt, apply the law of total expectation to obtain

E[(xt − x∗)⊤g(xt; ξt)] = E[E[(xt − x∗)⊤g(xt; ξt)|ξ1, . . . , ξt−1]]

= E[(xt − x∗)⊤E[g(xt; ξt)|ξ1, . . . , ξt−1]]

= E[(xt − x∗)⊤∇F(xt)] (⋄)
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Proof of Theorem 2 (cont.)

Furthermore, strong convexity gives

⟨∇F(xt), xt − x∗⟩ = ⟨∇F(xt)−∇F(x∗)︸ ︷︷ ︸
0

, xt − x∗⟩ ≥ µ||xt − x∗||22

=⇒ E[⟨∇F(xt), xt − x∗⟩] ≥ µE[||xt − x∗||22]

Combine the above inequalities and (2) (with cg = 0) to obtain

E[||xt+1 − x∗||22] ≤ (1 − 2µηt)E[||xt − x∗||22] + η2
t σ

2
g︸︷︷︸

does not vanish unless ηt→0

Take ηt =
θ

t+1 and use induction to conclude the proof (exercise!)



ECE 5290/7290 & ORIE 5290 10 / 39

Optimality*

Whether O(1/t) convergence is the best we can hope for?

Informally, when minimizing strongly convex functions, no algorithm
performing t queries to noisy first-order oracles can achieve an
accuracy better than the order of 1/t.

⇒ SGD with stepsizes ηt ≈ 1/t is optimal.

— Nemirovski, Yudin ’83, Agarwal et al. ’11, Raginsky, Rakhlin ’11
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Stepsize choice O(1/t)?

Two conflicting regimes
the noiseless case (i.e. g(x; ξ) = ∇F(x)): stepsizes ηt ≈ 1/t are way
too conservative
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Stepsize choice O(1/t)?

Two conflicting regimes
the general noisy case: longer stepsizes (ηt ≫ 1/t) might fail to
suppress noise (and hence slow down convergence)
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Motivation for iterate averaging

SGD with long stepsizes poorly suppresses noise, which tends to oscillate
around the global minimizers due to the noisy gradient.

May average iterates to mitigate oscillation and reduce variance.
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Acceleration by averaging the iterates

—Ruppert ’88, Polyak ’90, Polyak, Juditsky ’92

Iterate averaging returns

x̄t :=
1
t

t−1∑
i=0

xi

with larger stepsizes ηt = t−α, α < 1.

Key idea: average the iterates (as the final output) to reduce variance
and improve convergence.
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Example: a toy quadratic minimization problem

min
x∈Rd

1
2 ||x||

2
2

constant stepsizes: ηt ≡ η < 1
g(xt; ξt) = xt + ξt with

⇒ E[ξt|ξ0, . . . , ξt−1] = 0 and E[ξt(ξt)⊤|ξ0, . . . , ξt−1] = I

SGD iterates:

x1 = x0 − η(x0 + ξ0) = (1 − η)x0 − ηξ0

x2 = x1 − η(x1 + ξ1) = (1 − η)2x0 − η(1 − η)ξ0 − ηξ1

...
xt = (1 − η)tx0 − η(1 − η)t−1ξ0 − η(1 − η)t−2ξ1 − · · ·
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Example: a toy quadratic minimization problem

min
x∈Rd

1
2 ||x||

2
2

Iterate averaging gives

x̄t ≈ 1
t

t−1∑
k=0

(1 − η)kx0

︸ ︷︷ ︸
= 1

t
1−(1−η)t

η x0 t→∞−−−→0

− η{1 + (1 − η) + . . . }1
t

t−1∑
k=0

ξk

︸ ︷︷ ︸
imprecise; but close enough for large t

= −1
t

t−1∑
k=0

ξk (since 1 + (1 − η) + · · · = η−1)

t→∞−−−→ 1√
t
N (0, I) (the central limit theorem)
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Last iterate vs. Averaged iterates in SGD

Last iterate. xt = (1 − η)tx0 − η
∑t−1

k=0(1 − η)t−1−kξk

lim
t→∞

E∥xt∥2 =
η

2 − η
⇒ with η = 1, variance floor O(1).

Averaged iterate. x̄t = 1
t
∑t−1

j=0 xj ≈ − 1
t
∑t−1

k=0 ξ
k

√
t x̄t d−→ N (0, I) ⇒ E∥x̄t∥2 ≈ d

t .

Takeaway:
Last iterate: variance ≈ O(1) (does not vanish).
Averaged iterate: variance ≈ O(1/t) (vanishes).
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Example: more general quadratic problems

min
x

1
2x⊤Ax − b⊤x

A ⪰ µI ≻ 0 (strongly convex)

constant stepsizes: ηt ≡ η < 1/µ

g(xt; ξt) = Axt − b + ξt with
⇒ E[ξt|ξ0, . . . , ξt−1] = 0

⇒ S := limt→∞ E[ξt(ξt)⊤|ξ0, . . . , ξt−1] is finite
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Example: more general quadratic problems

min
x

1
2x⊤Ax − b⊤x

Theorem 4 Fix d. Then as t → ∞, the iterate average x̄t obeys
√

t(x̄t − x∗) D−→ N (0,A−1SA−1)

where D−→ denotes convergence in distribution.
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Example: quadratic problems

√
t(x̄t − x∗) D−→ N (0,A−1SA−1), t → ∞

asymptotically, ||x̄t − x∗||22 ≍ 1/t, matching the rate in Theorem 2

much longer stepsizes (ηt ̸≈ 1/t)

⇒ faster convergence for less noisy cases (e.g. ξt = 0)
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Proof sketch of Theorem 4*

(1) Let ∆t = xt − x∗ and ∆̄t = x̄t − x∗. SGD update rule gives

∆t+1 = ∆t − η(A∆t + ξt) = (I − ηA)∆t − ηξt

∆t+1 = (I − ηA)t+1∆0 − η

t∑
k=0

(I − ηA)t−kξk

(2) Simple calculation gives (check Polyak, Juditsky ’92)

∆̄t =
1
tηGt

0∆
0 +

1
t

t−2∑
j=0

A−1ξj +
1
t

t−2∑
j=0

(Gt
j − A−1)ξj

where Gt
j := η

∑t−1−j
i=0 (I − ηA)i.
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Proof sketch of Theorem 4 (cont.)*

(3) From the central limit theorem for martingales,

1√
t

t−2∑
j=0

A−1ξj D−→ N (0,A−1SA−1)

(4) With proper stepsizes, one has (check Polyak, Juditsky ’92)

||Gt
0|| < ∞, ||Gt

j − A−1|| < ∞ and lim
t→∞

1
t

t−1∑
j=0

||Gt
j − A−1||2 = 0

(5) Combining these bounds establishes Theorem 4
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Why we want momentum for GD?

x∗

gradient descent

Iteration complexities of (projected) gradient methods under strongly
convex and smooth problems (κ can be large)

O
(
κ log

1
ϵ

)
Can one still hope to further accelerate convergence?
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Issues of GD and possible solutions

Issues:
GD focuses on improving the cost per iteration, which might
sometimes be too ”short-sighted”
GD might sometimes zigzag or experience abrupt changes

Solutions:
exploit information from the history (i.e. past iterates)
add buffers (like momentum) to yield smoother trajectory
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Heavy-ball or Polyak’s momentum method

B. Polyak

minimizex∈Rn f(x)

xt+1 = xt−ηt∇f(xt)+θt(xt − xt−1)︸ ︷︷ ︸
momentum term

add inertia to the “ball” (i.e., a momentum) to mitigate zigzagging
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Heavy-ball vs Gradient descent method

x∗

gradient descent

x∗

heavy-ball method
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Gradient descent with Polyak’s momentum
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Figure: GD v.s. Polayk momentum

How to theoretically explain this phenomenon?
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Heavy-ball methods for quadratic minimization

Consider the quadratic minimization problem

minimizex
1
2(x − x∗)⊤Q(x − x∗)

where Q ≻ 0 has a condition number κ

One can understand heavy-ball methods through dynamical systems
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Heavy-ball method as a linear dynamical system

Heavy-ball update rule:

xt+1 = xt − ηt∇f(xt) + θt(xt − xt−1)

Equivalent augmented state representation:[
xt+1

xt

]
=

[
(1 + θt)I −θtI

I 0

] [
xt

xt−1

]
−
[
ηt∇f(xt)

0

]
.

Interpretation:
Dynamics as a 2d-dimensional linear system with input −ηt∇f(xt).
Matrix captures the momentum carryover between (xt, xt−1).
Useful for analyzing stability via spectral radius.
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Heavy-ball method as a linear dynamical system

Consider the following dynamical system[
xt+1

xt

]
=

[
(1 + θt)I −θtI

I 0

] [
xt

xt−1

]
−
[
ηt∇f(xt)

0

]
or equivalently,[

xt+1 − x∗
xt − x∗

]
︸ ︷︷ ︸

state

=

[
(1 + θt)I −θtI

I 0

] [
xt − x∗

xt−1 − x∗
]
−
[
ηt∇f(xt)

0

]

=

[
(1 + θt)I − ηtQ −θtI

I 0

]
︸ ︷︷ ︸

system matrix

[
xt − x∗

xt−1 − x∗
]
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System matrix

[
xt+1 − x∗
xt − x∗

]
=

[
(1 + θt)I − ηtQ −θtI

I 0

]
︸ ︷︷ ︸

=:Ht (system matrix)

[
xt − x∗

xt−1 − x∗
]

(1)

Implication: convergence of heavy-ball methods depends on the
spectrum of the system matrix Ht

Key idea: find appropriate stepsizes ηt and momentum coefficients θt to
control the spectrum of Ht
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Convergence for quadratic problems

Theorem 1 (Convergence for quadratic functions)
Suppose f is an L-smooth and µ-strongly convex quadratic function. Set
ηt = 4/(

√
L +

√
µ)2, θt = max{|1 −

√
ηtL|, |1 −√

ηtµ|}2, and κ = L/µ.
Then ∥∥∥∥[xt+1 − x∗

xt − x∗
]∥∥∥∥

2
≈
(√

κ− 1√
κ+ 1

)t ∥∥∥∥[x1 − x∗
x0 − x∗

]∥∥∥∥
2

iteration complexity: O(
√
κ log 1

ε )

significant improvement over GD: O(
√
κ log 1

ε ) vs. O(κ log 1
ε )

relies on knowledge of both L and µ
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Proof of Theorem 1*
In view of (1), it suffices to control the spectrum of Ht (which is
time-invariant). Let λi be the ith eigenvalue of Q and set

Λ :=

λ1
. . .

λn


then the spectral radius (denoted by ρ(·)) of Ht obeys

ρ(Ht) = ρ

([
(1 + θt)I − ηtΛ −θtI

I 0

])

≤ max
1≤i≤n

ρ

([
1 + θt − ηtλi −θt

1 0

])
To finish the proof, it suffices to show

max
i

ρ

([
1 + θt − ηtλi −θt

1 0

])
≤

√
κ− 1√
κ+ 1 (2)
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Proof of Theorem 1*

To show (2), the two eigenvalues of
[
1 + θt − ηtλi −θt

1 0

]
are the roots of

z2 − (1 + θt − ηtλi)z + θt = 0 (3)

If (1 + θt − ηtλi)2 ≤ 4θt, then the roots of (3) have the same magnitudes√
θt (either they are conjugates of each other or only one root).

In addition, one can easily check that (1 + θt − ηtλi)2 ≤ 4θt is satisfied if

θt ∈
[
(1 −

√
ηtλi)

2, (1 +
√
ηtλi)

2
]
, (4)

which would hold if one picks θt = max{(1 −
√
ηtL)2, (1 −√

ηtµ)2}
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Proof of Theorem 1*

With this choice of θt, we have (from (3) and the fact that two
eigenvalues have identical magnitudes)

ρ(Ht) ≤
√
θt.

Setting ηt =
4

(
√

L+√
µ)2 ensures 1 −

√
ηtL = −(1 −√

ηtµ), which yields

θt = max


(

1 − 2
√

L√
L +

√
µ

)2

,

(
1 −

2√µ
√

L +
√
µ

)2
 =

(√
κ− 1√
κ+ 1

)2
.

This in turn establishes
ρ(Ht) ≤

√
κ− 1√
κ+ 1
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Drawbacks in heavy-ball method

The accelerated rate of heavy-ball method can only be theoretically
established for quadratic optimization algorithms

It is unknown whether heavy-ball can theoretically outperform
gradient descent in problems other than quadratic optimization

In practice, heavy ball is always faster than gradient descent



Recap and fine-tuning

What we have talked about today?
⇒ The impact of noise variance on SGD convergence?
⇒ How to reduce variance by averaging iterates?
⇒ What is momentum and how it helps convergence?

Welcome anonymous survey!
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