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Recall stochastic programming

We view both the model training and testing problems as

min,  F(x) = E[f(X: £)]

(. >

expected risk, popular risk, ..

m & training or testing data in ML problems

m suppose f{-;§) is convex for every £ (and hence F(-) is convex)
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Example: empirical risk minimization

Let {a;, y;}7; be n random samples, and consider

m|n F(x Z fix; {ai, yi})

empirical risk
e.g. quadratic loss f{x; {a;, yi}) = (a] x — y;)%.
If one draws index j ~ Unif(1,..., n) uniformly at random, then
Fx) = B/{f(; {a. 7))
which is the model training problem we aim to tackle.

)
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Compare GD, SGD and mini-batch SGD trajectories

— Batch gradient descent
— Mini-batch gradient Descent
— Stochastic gradient descent
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Tradeoffs in large and small stepsizes

SGD Step Size Trade-offs: Different Noise Floors with Constant n

Step sizes
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Iteration

Small 1 converges slowly to a low floor, moderate 7 balances speed and
floor, large 1 drops fast but stabilizes at a higher floor.
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Convergence with diminishing stepsizes

Theorem 2 (Strong convexity and diminishing stepsizes)

Suppose F is p-strongly convex, and (2) holds with ¢, = 0. If

1t = o7 for some 6 > 5+ then SGD (1) achieves

S
t+1

E[|)x" — x*|I3] <
2 2
where ¢y = max{m7 [[xo _X*@}'

m convergence rate O(1/t) with diminishing stepsize 7, ~ 1/t
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Simulations of SGD with diminishing stepsizes

£t -x 2
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SGD with ns=6/(t + 1) on u-strongly convex F (here u=1)

Empirical £]xt— x " |? (avg over runs)
~=- Theory bound cg/(t +1), cg=16.00

K=1.0,0,=0.56=10,x0=4.0

co=max{ 2% |xo x|} = 16.00
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Iteration t

The dashed curve is the theoretical -4 bound; the solid line is the
empirical mean-squared error.

t+1
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Proof of Theorem 2

Using the SGD update rule, we have (compare with GD proof steps)
[ = x5 = [Ix" = neg(x5 €°) — x*(+nee(x": €9))7]13
= [Ix* = x*|13 — 2me(x" — x") Tg(x"; €°) + 0 |g(x" €113 (%)
Since x! is independent of &;, apply the law of total expectation to obtain
E[(x —x") "g(x" €")] = E[E[(x" — x") "g(x" €)[éx, ., &1l

= E[(x* - x") "E[g(x";€")[é1, - - el
= E[(x" — x") " VFA(x")] (©)
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Proof of Theorem 2 (cont.)

Furthermore, strong convexity gives
(VF(x),x" —x*) = (VF(x*) = VF(x"),x" = x") > pl|x" = x"|[3
——
0
= E[(VF(x'),x" —x")] > pE[[x" - x*[[3]

Combine the above inequalities and (2) (with c; = 0) to obtain

Ef[x“ —x*|I3] < (1 — 2pme) E[[x — x*||3] + oy

—~—
does not vanish unless 17;—0

Take 1y = t%l and use induction to conclude the proof (exercise!)

)

ECE 5290/7290 & ORIE 5290

9/39



Optimality*

Whether O(1/t) convergence is the best we can hope for?

m Informally, when minimizing strongly convex functions, no algorithm
performing t queries to noisy first-order oracles can achieve an
accuracy better than the order of 1/t.

= SGD with stepsizes 7; ~ 1/t is optimal.

— Nemirovski, Yudin '83, Agarwal et al. 11, Raginsky, Rakhlin '11
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Table of Contents

Reducing variance via averaging
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Stepsize choice O(1/t)?

Noiseless GD — middle schedules (constant vs harmonic vs polynomial decay)
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Iteration t

Two conflicting regimes

m the noiseless case (i.e. g(x;&) = VF(x)): stepsizes 7 ~ 1/t are way
too conservative
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Stepsize choice O(1/t)?

Mild-noise SGD — tradeoffs across schedules

10! constantn = 0.2
harmony f=1/(t+ 1)
: — polynomial n = 0.3/(t + 1)
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Two conflicting regimes

ETF(xe) = F(x*)]

Heavy-noise SGD — decaying schedules suppress variance best
o

— constantn =02
— hamony n= 1A+ 1)
— polynomial ;= 0.3/t + DV
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Iteration ¢

1200 1400 1600

m the general noisy case: longer stepsizes (n; > 1/t) might fail to
suppress noise (and hence slow down convergence)
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Motivation for iterate averaging

SGD with long stepsizes poorly suppresses noise, which tends to oscillate
around the global minimizers due to the noisy gradient.

SGD Noise vs. Averaging Effect

X SGDiterates (noisy) ~ X Averagedpath X Minimum
isy oscillation Averaging pulls
(IXge step size) closer to optimum

May average iterates to mitigate oscillation and reduce variance.
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Acceleration by averaging the iterates

—Ruppert ‘88, Polyak '90, Polyak, Juditsky '92
Iterate averaging returns
with larger stepsizes n, = t7¢, a < 1.

Key idea: average the iterates (as the final output) to reduce variance
and improve convergence.

@
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Example: a toy quadratic minimization problem

1
min —|(X
min - |x/13

m constant stepsizes: 7, =71 <1
m g(x% &) = xt 4 &F with
= E[E'[¢°,....€71=0and E[g'(¢") T[¢", ..., =1

SGD iterates:

x' =x0 —n(x®+€°%) = (1 — n)x® — ne°
x> =xt —n(xt 4+ €H) = (1 —n)*x° — (1 —n)e® —net

xt = (1=n)x0—n(l—n)"1 —nl —n)3" -

ECE 5290/7290 & ORIE 5290 16 /39



Example: a toy quadratic minimization problem

min > SN

Iterate averaging gives

B 1 t—1 1 t—1
‘e ;Z(l—n)kxo L+ (-4 3D ¢
k=0 k=0

1 1_( X0 t— oo imprecise; but close enough for large t
=i — L= x0———0

-1
:_%ka (since 1+ (1—n)+---=n"1)

(the central limit theorem)
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Last iterate vs. Averaged iterates in SGD

Last iterate. x! = (1 —7)ix° — nzk_ (1 — p)t-1kek

lim E||x!|]? = T = with n = 1, variance floor O(1).
t—o0 2—179
Averaged iterate. X = 1 Jt_g x & Lk

ViRE S N(@O,1) = E[x*~ <.

Takeaway:
m Last iterate: variance ~ O(1) (does not vanish).

m Averaged iterate: variance &~ O(1/t) (vanishes).

)
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Example: more general quadratic problems

1
min ExTAx —b'x

m A > ul - 0 (strongly convex)

m constant stepsizes: n: =1 <1/u
m g(x5 &) = Axt — b + £ with
= E[£]l¢%, ..., 67 =0

= S = limeoo E[E7(€7) TIE0, ..., €71 s finite
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Example: more general quadratic problems

1
min =x' Ax —b'x

Theorem 4 Fix d. Then as t — oo, the iterate average X' obeys
Vi —x*) 2 N(0,A1SA)
where 2 denotes convergence in distribution.

@
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Example: quadratic problems

VERE—x*) 2 N(0,A7ISAY), t— o

m asymptotically, ||x* — x*||3 < 1/t, matching the rate in Theorem 2
m much longer stepsizes (7 % 1/t)

= faster convergence for less noisy cases (e.g. £ =0)
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Proof sketch of Theorem 4*

(1) Let At = x* — x* and A* = x* — x*. SGD update rule gives

AT = A= n(AAT +€°) = (1 - nA)A" — ¢!
t
At+1 _ (l _ nA)HlAO -7 (| _ UA)t_kfk
k=0

(2) Simple calculation gives (check Polyak, Juditsky '92)
t—2 t—2

1 .
= CtAO J t _ A—1\¢J
mGA—l— ZA e+ tjz;(cj A1)

where G =13 1" 3 (1= nA).
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Proof sketch of Theorem 4 (cont.)*

(3) From the central limit theorem for martingales,

t—2
\% STA LY 2 N(0,ATISAY)

j=0
(4) With proper stepsizes, one has (check Polyak, Juditsky '92)
=
IGill <00, 116 A <00 and im 3" iG~ AP =0
j=0
(5) Combining these bounds establishes Theorem 4

@
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Table of Contents

Heavy-ball type momentum methods
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Why we want momentum for GD?

L7 - - —\\\\\\/4

- - - _-—-=-=- ~ N N
A /%\\ NN
/ , p s &5 SNENN >/ \ \
I / ’ vy |

| ) V7)) ! |

| . NS
\ N syt oo
\ N ~S.__Z- // / ;
N ~ S s,

gradient descent

Iteration complexities of (projected) gradient methods under strongly
convex and smooth problems (x can be large)
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Can one still hope to further accelerate convergence?
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Issues of GD and possible solutions

Issues:

m GD focuses on improving the cost per iteration, which might
sometimes be too "short-sighted”

m GD might sometimes zigzag or experience abrupt changes

Solutions:
m exploit information from the history (i.e. past iterates)

m add buffers (like momentum) to yield smoother trajectory

)
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Heavy-ball or Polyak’s momentum method

minimizexer»  f(X)

X = x'—n, VAX)+0,(x" — x"1)
v/

momentum term

ECE 5290/7290 & ORIE 5290 27/39



Heavy-ball vs Gradient descent method
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Gradient descent with Polyak's momentum
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Figure: GD v.s. Polayk momentum

How to theoretically explain this phenomenon?
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Heavy-ball methods for quadratic minimization

Consider the quadratic minimization problem
e 1 *\ T *
minimize, E(x—x ) Q(x — x™)

where Q = 0 has a condition number &

One can understand heavy-ball methods through dynamical systems
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Heavy-ball method as a linear dynamical system

Heavy-ball update rule:
X = x' = VAXY) + 0(x" — xt_l)

Equivalent augmented state representation:
X[ +0)1 =0 [ xt ] [n:VAxY)
xt |~ / 0 | |xt1 0 :

Interpretation:
m Dynamics as a 2d-dimensional linear system with input —n,Vf{(x").
m Matrix captures the momentum carryover between (x,x*1).
m Useful for analyzing stability via spectral radius.
&)
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Heavy-ball method as a linear dynamical system

Consider the following dynamical system

{x;l_ e +Iet)/ _gt/: [er ] - [ntVf(xt)]

or equivalently,

[xt“ —x*]  [(L+0:)] —6,]] [th - x**} B {Utv"(xt)}

xt — x* / 0 | [x!1—x 0

|

state

/ 0 xt—1 —x

- [(1 +0:)1 —n:Q —th] [ Xt—x**:|

system matrix

ECE 5290/7290 & ORIE 5290 32/39



System matrix

{xtﬂ - x*] _ {(1 +0:)—n:Q _efl] [th B x**} (1)

xt — x* / 0 =1 _

=:H; (system matrix)

Implication: convergence of heavy-ball methods depends on the
spectrum of the system matrix H;

Key idea: find appropriate stepsizes 7, and momentum coefficients 6, to
control the spectrum of H;

3 33/39
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Convergence for quadratic problems

Theorem 1 (Convergence for quadratic functions)

Suppose fis an L-smooth and p-strongly convex quadratic function. Set

e =4/(VL+ /i), 0: = max{|L — VieL|, |1 — /7et]}2, and & = L/ps.
Then

xt x| (VE-1 I Txt — x*

Xt—X* 2"“ \/E—F]. XO—X*

m iteration complexity: O(y/k log 1)

2

m significant improvement over GD: O(v/klog 1) vs. O(x log 1)

m relies on knowledge of both L and p

©)
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Proof of Theorem 1*

In view of (1), it suffices to control the spectrum of H; (which is
time-invariant). Let ); be the ith eigenvalue of Q and set

A1
A=
An

then the spectral radius (denoted by p(-)) of H; obeys

p(Hy) = p ([(1 + 9t)ll — e —gt/D

1 + Ht — 77t)\,' —9t

To finish the proof, it suffices to show

o[ )

1 0 VE+1
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Proof of Theorem 1*

]. —+ 91— — 771—)\,‘ 701-

1 0 are the roots of

To show (2), the two eigenvalues of

Z2— (146, —n\)z+60:=0 (3)

If (14 60; — n:\i)? < 40;, then the roots of (3) have the same magnitudes
\/0: (either they are conjugates of each other or only one root).

In addition, one can easily check that (1 + 60, — n:\;)? < 40, is satisfied if
0: € |1 = VM)A L+ Vien)?] (4)
which would hold if one picks 8; = max{(1 — v/n:L)?, (1 — \/N2)*}
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Proof of Theorem 1*

With this choice of 6;, we have (from (3) and the fact that two
eigenvalues have identical magnitudes)

p(He) < \/‘97

Setting 1y = m ensures 1 — /n,L = —(1 — \/m:1), which yields

= max —72ﬂ 2 VE—1 2
= (1 ﬂ+\/ﬁ> ’(1 \f+f>} <f+1> '

This in turn establishes

7

p(He) <

B

+
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Drawbacks in heavy-ball method

m The accelerated rate of heavy-ball method can only be theoretically
established for quadratic optimization algorithms

m It is unknown whether heavy-ball can theoretically outperform
gradient descent in problems other than quadratic optimization

m In practice, heavy ball is always faster than gradient descent
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Recap and fine-tuning

m What we have talked about today?
= The impact of noise variance on SGD convergence?
= How to reduce variance by averaging iterates?
= What is momentum and how it helps convergence?
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