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Revisit model training

Let’s make our price predictor more realistic by adding more features.

Size (sq. ft.) # Bedrooms Age (years) Price ($k)
1200 3 10 250
2000 4 5 350
800 2 25 150

Our goal is to find the best parameter x of model hx(a) by minimizing

f(x) = 1
2n

n∑
i=1

(hx(a(i))− y(i))2

Given previous discussion about f(x), what is unique about this objective?
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Empirical risk minimization - a “machine learning” name

Let {ai, yi}n
i=1 be n random samples, and consider

min
x

F(x) := 1
n

n∑
i=1

f(x; {ai, yi})︸ ︷︷ ︸
empirical risk

e.g., quadratic loss f(x; {ai, yi}) = (a⊤
i x − yi)2. If one draws index

j ∼ Unif(1, . . . , n) uniformly at random, then

F(x) = Ej[f(x; {aj, yj})]



ECE 5290/7290 & ORIE 5290 4 / 36

Stochastic programming - an “optimization” name

We view both the model training and testing problems as

minx F(x) = E[f(x; ξ)]︸ ︷︷ ︸
expected risk, popular risk, …

ξ: randomness in problem
suppose f(·; ξ) is convex for every ξ (and hence F(·) is convex)
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Connecting the two views: Goal vs. Reality

We ideally want a model x that performs well on all future data D:

min
x

E(a,y)∼D[f(x; {a, y})]

We can’t compute this because we don’t have access to all data.

⇓
We use our finite training sample average as a proxy for the true D:

1
n

n∑
i=1

f(x; {ai, yi}) ≈ E(a,y)∼D[f(x; {a, y})]
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A natural solution

Under “mild” technical conditions, if we run the gradient descent method
from previous lectures, we have

xt+1 = xt − ηt∇F(xt)

= xt − ηt∇E[f(xt; ξ)]

= xt − ηtE[∇xf(xt; ξ)]

Issues:
testing setting - distribution of ξ may be unknown
training setting - even if it is known, evaluating is expensive
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Why is expectation expensive?

The expectation is over the entire data distribution:

∇F(x) = Eξ[∇f(x; ξ)]

In practice, this means averaging gradients over all samples

Example: ImageNet has > 1 million samples - one full gradient step
would require computing 1,000,000+ gradients!

Takeaway: Exact expectation is computationally infeasible;
motivates stochastic approximations.
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What should we do?

Generated by GPT 5 with prompt “generate one cartoon for samping”
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Stochastic gradient descent (SGD)

Stochastic gradient descent (SGD)

xt+1 = xt − ηtg(xt; ξt) (1)

where g(xt; ξt) is an unbiased estimate of ∇F(xt), i.e.

E[g(xt; ξt)] = ∇F(xt)

— Robbins, Monro ’51
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Stochastic gradient descent (SGD)

Herbert Robbins

Stochastic approximation / Stochastic
gradient descent (SGD)

xt+1 = xt − ηtg(xt; ξt) (1)

a stochastic algorithm for finding a critical
point x obeying ∇F(x) = 0
more generally, a stochastic algorithm for
finding the roots of G(x) := E[g(x; ξ)]
x does not necessarily obey g(x; ξ) = 0

— Robbins, Monro ’51
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Example: SGD for empirical risk minimization

min
x

F(x) := 1
n

n∑
i=1

f(x; {ai, yi})

for t = 0, 1, ...
choose it uniformly at random, and compute ∇xfit(xt; {ait , yit})
run the gradient descent update

xt+1 = xt − ηt∇xfit(xt; {ait , yit})

end for
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Compare GD and SGD trajectories

x0

x1

x2

Figure: Example trajectory of Stochastic Gradient Descent (SGD) on a 2D loss
landscape. The path is more erratic due to the noisy gradient estimates.
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Example: SGD for empirical risk minimization

Benefits: SGD exploits information more efficiently than batch methods

practical data usually involve lots of redundancy; using all data
simultaneously in each iteration might be inefficient

SGD is particularly efficient at the very beginning, as it achieves fast
initial improvement with low per-iteration cost
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Strongly convex and smooth problems

min
x

F(x) := E[f(x; ξ)]

Assumptions:
F: µ-strongly convex, L-smooth

g(xt; ξt): an unbiased estimate of ∇F(xt) given {ξ0, . . . , ξt−1}

g(xt; ξt) has bounded variance: for all x,

E[||g(x; ξ)||22] ≤ σ2
g + cg||∇F(x)||22 (2)

Why having unbiasedness and bounded variance?
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Mini-batch gradients: Variance reduction
Instead of using a single sample ξt, we can use a mini-batch of B i.i.d.
samples {ξt

1, . . . , ξ
t
B} to form a better gradient estimate:

gB(xt) :=
1
B

B∑
i=1

g(xt; ξt
i )

Unbiasedness: The mini-batch estimate is still unbiased.

E[gB(xt)] =
1
B

B∑
i=1

E[g(xt; ξt
i )] =

1
B

B∑
i=1

∇F(xt) = ∇F(xt)

Reduced variance: The variance σ2
g is reduced by a factor of B:

E[||gB(x; ξ)||22] ≤
σ2

g
B︸︷︷︸

Reduced!

+

(
1 +

cg − 1
B

)
︸ ︷︷ ︸

cB

||∇F(x)||22
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Proof: Variance reduction

Let’s expand the squared Euclidean norm of the mini-batch gradient:

∥gB(x)∥2
2 =

∥∥∥∥∥ 1
B

B∑
i=1

g(x; ξi)

∥∥∥∥∥
2

2

=
1

B2

∥∥∥∥∥
B∑

i=1
g(x; ξi)

∥∥∥∥∥
2

2

=
1

B2

 B∑
i=1

∥g(x; ξi)∥2
2 +

∑
i̸=j

g(x; ξi)
⊤g(x; ξj)


Now, we take the expectation. By linearity of expectation:

E[∥gB(x)∥2
2] =

1
B2

 B∑
i=1

E[∥g(x; ξi)∥2
2] +

∑
i̸=j

E[g(x; ξi)
⊤g(x; ξj)]


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Proof: Variance reduction
1. Sum of squared norms: Using i.i.d. and the individual variance:

B∑
i=1

E[∥g(x; ξi)∥2
2] ≤ B(σ2

g + cg∥∇F(x)∥2
2)

2. Cross-terms: For i ̸= j, E[g(x; ξi)⊤g(x; ξj)] = ∥∇F(x)∥2
2

There are B(B − 1) such cross-terms.∑
i ̸=j

E[g(x; ξi)
⊤g(x; ξj)] = B(B − 1)∥∇F(x)∥2

2

Substitute these back into the expectation:

E[∥gB(x)∥2
2] ≤

1
B2

(
B(σ2

g + cg∥∇F(x)∥2
2) + B(B − 1)∥∇F(x)∥2

2
)

=
Bσ2

g
B2 +

Bcg∥∇F(x)∥2
2

B2 +
(B2 − B)∥∇F(x)∥2

2
B2

=
σ2

g
B +

(
1 +

cg − 1
B

)
∥∇F(x)∥2

2
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Compare GD, SGD and mini-batch SGD trajectories
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Convergence: fixed stepsizes

Theorem 1 (Strong convexity and fixed stepsizes)

Under the assumptions in previous slide, if ηt ≡ η ≤ 1
Lcg

, then SGD
(1) achieves

E[F(xt)− F(x∗)] ≤
ηLσ2

g
2µ + (1 − ηµ)t(F(x0)− F(x∗))

check Bottou, Curtis, Nocedal ’18 (Theorem 4.6) for the proof

“Optimization methods for large-scale machine learning,” Bottou, Curtis,
Noceda, arXiv, 2018.
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Implications: SGD with fixed stepsizes

E[F(xt)− F(x∗)] ≤
ηLσ2

g
2µ + (1 − ηµ)t(F(x0)− F(x∗))

fast (linear) convergence at the very beginning

converges to some neighborhood of x∗ - variation in gradient
computation prevents further progress

when gradient computation is noiseless (i.e. σg = 0), it converges
linearly to optimal points

smaller stepsizes η yield better converging points
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One practical strategy

Run SGD with fixed stepsizes; whenever progress stalls, reduce stepsizes
and continue SGD.

One practical strategy
Run SGD with fixed stepsizes; whenever progress stalls, reduce
stepsizes and continue SGD

— Bottou, Curtis, Nocedal ’18

of stepsize decrease, we may invoke Theorem 4.6, from which it follows that to achieve the first
bound in (4.17) one needs

(1� ↵rcµ)(kr+1�kr)(4F↵r � F↵r)  F↵r

=) kr+1 � kr �
log(1/3)

log(1� ↵rcµ)
⇡ log(3)

↵rcµ
= O(2r).

(4.18)

In other words, each time the stepsize is cut in half, double the number of iterations are required.
This is a sublinear rate of stepsize decrease—e.g., if {kr} = {2r�1}, then ↵k = ↵1/k for all k 2
{2r}—which, from {F↵r} = {↵rLM

2cµ } and (4.17), means that a sublinear convergence rate of the
suboptimality gap is achieved.
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Fig. 4.1: Depiction of the strategy of halving the stepsize ↵ when the expected suboptimality gap
is smaller than twice the asymptotic limit F↵. In the figure, the segment B–B0 has one third of the
length of A–A0. This is the amount of decrease that must be made in the exponential term in (4.14)
by raising the contraction factor to the power of the number of steps during which one maintains
a given constant stepsize; see (4.18). Since the contraction factor is (1�↵cµ), the number of steps
must be proportional to ↵. Therefore, whenever the stepsize is halved, one must maintain it twice
as long. Overall, doubling the number of iterations halves the suboptimality gap each time, yielding
an e↵ective rate of O(1/k).

In fact, these conclusions can be obtained in a more rigorous manner that also allows more
flexibility in the choice of stepsize sequence. The following result harks back to the seminal work
of Robbins and Monro [130], where the stepsize requirement takes the form

1X

k=1

↵k =1 and
1X

k=1

↵2
k <1. (4.19)

Theorem 4.7 (Strongly Convex Objective, Diminishing Stepsizes). Under Assumptions 4.1,
4.3, and 4.5 (with Finf = F⇤), suppose that the SG method (Algorithm 4.1) is run with a stepsize
sequence such that, for all k 2 N,

↵k =
�

� + k
for some � >

1

cµ
and � > 0 such that ↵1 

µ

LMG
. (4.20)

28

Convergence analysis
Using Lemma 5.4, we immediate arrive at
Theorem 5.3

Suppose f is convex and Lipschitz continuous (i.e. ÎgtÎú Æ Lf ) on C,
and suppoe Ï is fl-strongly convex w.r.t. Î · Î. Then

fbest,t ≠ fopt Æ
supxœC DÏ

!
x,x0"

+ L2
f

2fl

qt
k=0 ÷2

kqt
k=0 ÷k

• If ÷t =
Ô

2flR
Lf

1Ô
t

with R := supxœC DÏ
!
x,x0"

, then

fbest,t ≠ fopt Æ O

A
Lf

Ô
RÔ

fl

log tÔ
t

B

¶ one can further remove log t factor
Mirror descent 5-37
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whenever progress stalls, we half the stepsizes and repeat

Stochastic gradient methods 11-23

Bottou, Curtis, Nocedal ’18

whenever progress stalls, we half the stepsizes and repeat
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Convergence with diminishing stepsizes

Theorem 2 (Strong convexity and diminishing stepsizes)

Suppose F is µ-strongly convex, and (2) holds with cg = 0. If
ηt =

θ
t+1 for some θ > 1

2µ , then SGD (1) achieves

E[||xt − x∗||22] ≤
cθ

t + 1

where cθ = max

{
2θ2σ2

g
2µθ−1 , ||x0 − x∗||22

}
.

convergence rate O(1/t) with diminishing stepsize ηt ≈ 1/t



ECE 5290/7290 & ORIE 5290 25 / 36

Proof of Theorem 2

Using the SGD update rule, we have (compare with GD proof steps)

||xt+1 − x∗||22 = ||xt − ηtg(xt; ξt)− x∗||22
= ||xt − x∗||22 − 2ηt(xt − x∗)⊤g(xt; ξt) + η2

t ||g(xt; ξt)||22 (⋆)

Since xt is independent of ξt, apply the law of total expectation to obtain

E[(xt − x∗)⊤g(xt; ξt)] = E[E[(xt − x∗)⊤g(xt; ξt)|ξ1, . . . , ξt−1]]

= E[(xt − x∗)⊤E[g(xt; ξt)|ξ1, . . . , ξt−1]]

= E[(xt − x∗)⊤∇F(xt)] (⋄)
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Proof of Theorem 2 (cont.)

Furthermore, strong convexity gives

⟨∇F(xt), xt − x∗⟩ = ⟨∇F(xt)−∇F(x∗)︸ ︷︷ ︸
0

, xt − x∗⟩ ≥ µ||xt − x∗||22

=⇒ E[⟨∇F(xt), xt − x∗⟩] ≥ µE[||xt − x∗||22]

Combine the above inequalities and (2) (with cg = 0) to obtain

E[||xt+1 − x∗||22] ≤ (1 − 2µηt)E[||xt − x∗||22] + η2
t σ

2
g︸︷︷︸

does not vanish unless ηt→0

Take ηt =
θ

t+1 and use induction to conclude the proof (exercise!)
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Optimality*

— Nemirovski, Yudin ’83, Agarwal et al. ’11, Raginsky, Rakhlin ’11

Informally, when minimizing strongly convex functions, no algorithm
performing t queries to noisy first-order oracles can achieve an
accuracy better than the order of 1/t.

⇒ SGD with stepsizes ηt ≈ 1/t is optimal.
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Optimality*

— Nemirovski, Yudin ’83

More precisely, consider a class of problems in which f is µ-strongly
convex and L-smooth, and Var(||g(xt; ξt)||2) ≤ σ2. Then the worst-case
iteration complexity for (stochastic) first-order methods:√

L
µ
log

(
L||x0 − x∗||22

ϵ

)
+

σ2

µϵ

for deterministic cases: σ = 0, and hence the lower bound is√
L
µ
log

(
L||x0 − x∗||22

ϵ

)
(achievable by Nesterov’s method)



ECE 5290/7290 & ORIE 5290 29 / 36

Optimality*

— Nemirovski, Yudin ’83

More precisely, consider a class of problems in which f is µ-strongly
convex and L-smooth, and Var(||g(xt; ξt)||2) ≤ σ2. Then the worst-case
iteration complexity for (stochastic) first-order methods:√

L
µ
log

(
L||x0 − x∗||22

ϵ

)
+

σ2

µϵ

for noisy cases with large σ, the lower bound is dominated by

σ2

µ
· 1
ϵ
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Comparisons with batch GD

Empirical risk minimization with n samples:

iteration
complexity

per-iteration
cost

total
comput. cost

batch GD log 1
ϵ n n log 1

ϵ

SGD 1
ϵ 1 1

ϵ

SGD is more appealing for large n and moderate accuracy ϵ (in which
case 1

ϵ < n log 1
ϵ )

⇒ which often arises in the big data regime!
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Convex problems

What if we lose strong convexity?

min
x

F(x) := E[f(x; ξ)]

Assumptions:
F: convex
E[||g(x; ξ)||22] ≤ σ2

g for all x
g(xt; ξt) is an unbiased estimate of ∇F(xt) given {ξ0, . . . , ξt−1}
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Convex problems

Suppose we return a weighted average

x̃t :=
t∑

k=0

ηk∑t
j=0 ηj

xk

Theorem 3 Under the assumptions in the previous slide, then

E[F(x̃t)− F(x∗)] ≤
1
2E[||x0 − x∗||22] + 1

2σ
2
g
∑t

k=0 η
2
k∑t

k=0 ηk

if ηt ≈ 1/
√

t, then

E[F(x̃t)− F(x∗)] ≤ log t√
t
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Proof of Theorem 3
By convexity of F(x), we have F(x) ≥ F(xt) + (x − xt)⊤∇F(xt)

=⇒ E[(xt − x∗)⊤∇F(xt)] ≥ E[F(xt)− F(x∗)]

This together with (⋆) and (⋄) in Proof of Theorem 2 implies

2ηkE[F(xk)− F(x∗)] ≤ E[||xk − x∗||22]− E[||xk+1 − x∗||22] + η2
kσ

2
g

Sum over k = 0, . . . , t to obtain
t∑

k=0
2ηkE[F(xk)− F(x∗)] ≤ E[||x0 − x∗||22]− E[||xt+1 − x∗||22] + σ2

g

t∑
k=0

η2
k

≤ E[||x0 − x∗||22] + σ2
g

t∑
k=0

η2
k
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Proof of Theorem 3 (cont.)

Setting vt =
ηt∑t

k=0 ηk
yields

t∑
k=0

vkE[F(xk)− F(x∗)] ≤
1
2E[||x0 − x∗||22] + 1

2σ
2
g
∑t

k=0 η
2
k∑t

k=0 ηk

By convexity of F(x), we arrive at

E[F(x̃t)− F(x∗)] ≤
t∑

k=0
vkE[F(xk)− F(x∗)]

≤
1
2E[||x0 − x∗||22] + 1

2σ
2
g
∑t

k=0 η
2
k∑t

k=0 ηk
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Recap and fine-tuning

What we have talked about today?
⇒ Why we need SGD and how it works?
⇒ What is its convergence properties?

Welcome anonymous survey!



Reference

“A stochastic approximation method,” H. Robbins, S. Monro, The Annals
of Mathematical Statistics, 1951.

“Robust stochastic approximation approach to stochastic programming,”
A. Nemirovski et al., SIAM Journal on Optimization, 2009.

“Optimization methods for large-scale machine learning,” L. Bottou et al.,
arXiv, 2016.

“New stochastic approximation type procedures,” B. Polyak, Automat.
Remote Control, 1990.

“Acceleration of stochastic approximation by averaging,” B. Polyak, A.
Juditsky, SIAM Journal on Control and Optimization, 1992.
“First-order methods in optimization,” A. Beck, Vol. 25, SIAM, 2017.

“A convergence theorem for nonnegative almost supermartingales and
some applications,” H. Robbins, D. Siegmund, Optimizing methods in
statistics, 1971.


	Stochastic gradient descent (SGD)
	Convergence analysis of SGD

