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Revisit model training

Let’s make our price predictor more realistic by adding more features.

Size (sq. ft.) # Bedrooms Age (years) Price ($k)

1200 3 10 250
2000 4 5 350
800 2 25 150

Our goal is to find the best parameter x of model hy(a) by minimizing

) = 5 > (@) - 07

Given previous discussion about f{(x), what is unique about this objective?
&
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Empirical risk minimization - a “machine learning” name

Let {aj;, y;}7; be n random samples, and consider

X

min F(x) := %Z fxi{ai vi})

empirical risk
e.g., quadratic loss f(x; {a;, y;}) = (a; x — y;). If one draws index
J~ Unif(1,..., n) uniformly at random, then

F(x) = Ej[f(x; {aj, y;})]
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Stochastic programming - an “optimization” name

We view both the model training and testing problems as

min,  F(x) :Elil[f(x;f)l

(.

expected risk, popular risk, ..

m &: randomness in problem

m suppose f{-;§) is convex for every £ (and hence F(-) is convex)
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Connecting the two views: Goal vs. Reality

We ideally want a model x that performs well on all future data D:
min Eaolf(x; {a))]

We can't compute this because we don't have access to all data.

4

We use our finite training sample average as a proxy for the true D:

=3 {3 5}) =~ Epapenlx (2,)]
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A natural solution

Under “mild” technical conditions, if we run the gradient descent method
from previous lectures, we have

xT = xt — 7, VF(x)
= x' =, VE[f(x"; )]
= x' = B[V Ax; )]

Issues:
m testing setting - distribution of £ may be unknown

m training setting - even if it is known, evaluating is expensive
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Why is expectation expensive?

m The expectation is over the entire data distribution:

VFH(x) = E¢[VA(x;{)]

m In practice, this means averaging gradients over all samples

m Example: ImageNet has > 1 million samples - one full gradient step
would require computing 1,000,000+ gradients!

m Takeaway: Exact expectation is computationally infeasible;
motivates stochastic approximations.

)
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What should we do?

Randomly sample

o

(©OQ®E

luh S8

900G
L]

Dataset Mini-batch
Generated by GPT 5 with prompt “generate one cartoon for samping”

@

ECE 5290/7290 & ORIE 5290 8/36



Table of Contents

Stochastic gradient descent (SGD)

ECE 5290/7290 & ORIE 5290 9/36



Stochastic gradient descent (SGD)

Stochastic gradient descent (SGD)
xt+1 _ Xt _ Utg(Xt; ft) (1)
where g(x%; &') is an unbiased estimate of V F(x"), i.e.

Elg(x";£%)] = VA(x)

— Robbins, Monro '51
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Stochastic gradient descent (SGD)

Stochastic approximation / Stochastic
gradient descent (SGD)

XH_l — xt _ mg(xt; ft) (1)

m a stochastic algorithm for finding a critical
point x obeying VF(x) =0

: | ; m more generally, a stochastic algorithm for
Herbert Robbins finding the roots of G(x) := E[g(x; £)]
m x does not necessarily obey g(x;£) =0

— Robbins, Monro '51
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Example: SGD for empirical risk minimization

m|n F(x Zf(x {ai,yi})

fort=0,1,...
m choose iy uniformly at random, and compute Vif,(x%; {a;, y;})

m run the gradient descent update
X = X" — e Vif (x5 {a, i })

end for
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Compare GD and SGD trajectories

Figure: Example trajectory of Stochastic Gradient Descent (SGD) on a 2D loss
landscape. The path is more erratic due to the noisy gradient estimates.
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Example: SGD for empirical risk minimization

Benefits: SGD exploits information more efficiently than batch methods

m practical data usually involve lots of redundancy; using all data
simultaneously in each iteration might be inefficient

m SGD is particularly efficient at the very beginning, as it achieves fast
initial improvement with low per-iteration cost
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Strongly convex and smooth problems

min F(x) = E[ffx; )]

Assumptions:
m F: p-strongly convex, L-smooth

m g(x%; £Y): an unbiased estimate of VF(x?) given {£°,... ¢t 1)
m g(x"% &Y) has bounded variance: for all x,

Elllg(x: §)I3] < og + gl VAx)I13 (2)

Why having unbiasedness and bounded variance?
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Mini-batch gradients: Variance reduction

Instead of using a single sample £f, we can use a mini-batch of Bi.i.d.
samples {&f, ..., &L} to form a better gradient estimate:

1
ga(x') = 5 >_8lx&)
m Unbiasedness: The mini-batch estimate is still unbiased.
1B
_ = £y _ t
Elgs(x)] = 5 ZElg =3 ;w(x ) = VX

m Reduced variance: The variance 02, is reduced by a factor of B:

E[llgs(x 2] < =

2
g g1 2
2 (1S IvAB
~~ — ———

Reduced! P
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Proof: Variance reduction

Let’s expand the squared Euclidean norm of the mini-batch gradient:

lea(x)II3 =

5 Zg(x &)

2

Zg(xi fi)

B
1
=& Z\Ig(X§)IIz+ZgX£ (x: &)
i=1 i#j

Now, we take the expectation. By linearity of expectation:

E[llgs(x)[13] = ZE[Hg(X E)E1+ Y Elg(x &) g(x &)]

m i#j
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Proof: Variance reduction

1. Sum of squared norms: Using i.i.d. and the individual variance:

B

> Elllgx:&)I3] < Blog + ¢l VAx)I3)

i=1

2. Cross-terms: For i # j, E[g(x; &) " g(x; )] = [[VF(x)|3
There are B(B — 1) such cross-terms.

> Ele(x; &) g(x: )] = B(B~1)| VFX)|3

i#j

Substitute these back into the expectation:

E[llgs(®)|3]

IN

= (B(o2 + | VF)I3) + B(B - )| VA)E)
_ Bz B VAX)IE (B~ B)IVAX)I3

OB B? B2
o2
j
B (

&
H

) IV 2
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Compare GD, SGD and mini-batch SGD trajectories

— Batch gradient descent
— Mini-batch gradient Descent
— Stochastic gradient descent
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Convergence: fixed stepsizes

Theorem 1 (Strong convexity and fixed stepsizes)

Under the assumptions in previous slide, if n; =n < E' then SGD
(1) achieves

BIF() — F()] < 578 + (1 ) () — )

m check Bottou, Curtis, Nocedal '18 (Theorem 4.6) for the proof

Optimization methods for large-scale machine learning,” Bottou, Curtis
Noceda, arXiv, 2018.

&
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Implications: SGD with fixed stepsizes

0.2
BIF) — )] < 528 + (1= ) (FO) — )

m fast (linear) convergence at the very beginning

m converges to some neighborhood of x* - variation in gradient
computation prevents further progress

m when gradient computation is noiseless (i.e. oz = 0), it converges
linearly to optimal points

m smaller stepsizes 7 yield better converging points
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One practical strategy

Run SGD with fixed stepsizes; whenever progress stalls, reduce stepsizes

and continue SGD.

Bottou, Curtis, Nocedal '18

whenever progress stalls, we half the stepsizes and repeat

23/36
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Convergence with diminishing stepsizes

Theorem 2 (Strong convexity and diminishing stepsizes)

Suppose F is p-strongly convex, and (2) holds with ¢, = 0. If

1t = o7 for some 6 > 5+ then SGD (1) achieves

S
t+1

E[|)x" — x*|I3] <
2 2
where ¢y = max{m7 [[xo _X*@}'

m convergence rate O(1/t) with diminishing stepsize 7, ~ 1/t
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Proof of Theorem 2

Using the SGD update rule, we have (compare with GD proof steps)
(X = x5 =[x — neg(x5 €°) — x*[5
= [|x* = x*|I3 — 27e(x" — x*) T g(x"; €°) + 7] |g(x" €5 (%)

Since x! is independent of &;, apply the law of total expectation to obtain

E[(x* - x") "g(x";€")] = E[E[(x" — x") Tg(x;£)[é1, - -, &l
= E[(x* - x") "E[g(x"; €[t - el
= E[(x" — x") " VF(x")] (©)
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Proof of Theorem 2 (cont.)

Furthermore, strong convexity gives

(V) x" = x*) = (VF(x) = VAx"),x* —x") > pl[x" — x"[[3
——
0

= E[(VAX)x" = x")] > pE[]x" — x"[[3]

Combine the above inequalities and (2) (with ¢z = 0) to obtain
E[|Ix** = x*[[3] < (1 — 2um)E[[x* — x[[3] + oy
~—~
does not vanish unless 1;—0
Take 1y = t% and use induction to conclude the proof (exercise!)

)
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Optimality*

— Nemirovski, Yudin '83, Agarwal et al. '11, Raginsky, Rakhlin '11

m Informally, when minimizing strongly convex functions, no algorithm
performing t queries to noisy first-order oracles can achieve an
accuracy better than the order of 1/t.

= SGD with stepsizes 7; ~ 1/t is optimal.
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Optimality*

— Nemirovski, Yudin '83

More precisely, consider a class of problems in which f is p-strongly
convex and L-smooth, and Var(||g(x!; £Y)||2) < o®. Then the worst-case
iteration complexity for (stochastic) first-order methods:

\/I|og<L||Xo—X*|5>+02
" € e

m for deterministic cases: o = 0, and hence the lower bound is

\ﬁlog (0= x12)
1 €

(achievable by Nesterov's method)
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Optimality*

— Nemirovski, Yudin '83

More precisely, consider a class of problems in which f is p-strongly
convex and L-smooth, and Var(||g(xt; £?)||2) < 0. Then the worst-case
iteration complexity for (stochastic) first-order methods:

\/I|Og<L||XoX*|§>+02
I € L€

m for noisy cases with large o, the lower bound is dominated by

02

m

o | =

ECE 5290/7290 & ORIE 5290 29 /36



Comparisons with batch GD

Empirical risk minimization with n samples:

iteration per-iteration total
complexity cost comput. cost
1 1
batch GD log ¢ n nlog ¢
1 1
SGD 2 1 1

SGD is more appealing for large n and moderate accuracy € (in which
case I < nlog?)

= which often arises in the big data regime!
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Convex problems

What if we lose strong convexity?
min F(x) := E[f(x; §)]
X

Assumptions:
m [ convex
= E[llg(x: )] < o2 for all
m g(x; £Y) is an unbiased estimate of VF(x?) given {¢0,...,¢t71}

@
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Convex problems

Suppose we return a weighted average

—Z

j OnJ

Theorem 3 Under the assumptions in the previous slide, then

SE[|x° — x*|3] + 3023, o mi
Zk:o Tk

E[F(%") - F(x")] < 2

m if 9, ~ 1/V/t, then

log t

7, EIF(E) — OO <
)
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Proof of Theorem 3

By convexity of F(x), we have F(x) > F(x!) + (x — x) T VF(x")

— E[(x' — x*)TVF(x")] > E[F(x") — F(x")]

This together with (x) and (¢) in Proof of Theorem 2 implies

20 B[F(x*) — F(x*)] < E[[[x* — x*|I3] = E[|IX"" — x*|[3] + ngog

Sum over k=10, ...t to obtain

t t
> 2mE[F(x*) — Fx)] < E[[x” = x*|[3] = E[[[x"* = x*|[3] + o7 > ik
k=0 k=0

t
< E[||x° —x"|5] + 07 > ik

s,
@ k=0
o h ECE 5290/7290 & ORIE 5290
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Proof of Theorem 3 (cont.)

Setting v; = Ztt yields

3B — x*13] + 307 Yio i

‘ v Xk 2
D WEIFK) — Fo) < S

By convexity of F(x), we arrive at
E[F(") — F(x")] < Z VE[F(x") = F(x")]

t
3 (1 — <1+ 102 Sk o
- ZZ:O Tk
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Recap and fine-tuning

m What we have talked about today?
= Why we need SGD and how it works?
= What is its convergence properties?

Welcome anonymous survey!
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