Distributed Optimization for Machine Learning

Lecture 7 - Gradient Methods for Constrained Problems

Tianyi Chen

School of Electrical and Computer Engineering Cornell Tech, Cornell University

September 17, 2025

Constrained convex problems

$$\min_{\mathbf{x}} f(\mathbf{x})$$
 subject to $\mathbf{x} \in \mathcal{C}$

- $f(\cdot)$: convex function
- $\mathcal{C} \subseteq \mathbb{R}^n$: closed convex set

Example: Constrained logistic regression

Why constrained problems in ML?

Standard logistic regression minimizes

$$\min_{\mathbf{w}} \frac{1}{N} \sum_{i=1}^{N} \log(1 + \exp(-y_i \mathbf{w}^{\top} x_i)).$$

■ To avoid overfitting, we may constrain the weights:

$$\|\mathbf{w}\|_{2} \leq R$$
.

- Interpretation:
 - Keeps parameters small ⇒ better generalization
 - Equivalent to weight regularization but fits in constrained form

Example: Distributed learning with consensus

Why constrained problems in distributed systems?

■ In distributed learning, the goal is to minimize a global loss function, which is the sum of local losses f_k from K different agents:

$$\min_{\{\mathbf{w}_k\}, \mathbf{z}} \sum_{k=1}^K \frac{1}{N_k} \sum_{i=1}^{N_k} \log (1 + \exp(-y_i \mathbf{w}_k^\top x_i)).$$

■ Each agent k has its own local parameter \mathbf{w}_k . To solve the global problem, we must enforce a **consensus constraint**:

$$\mathbf{w}_k = \mathbf{z}$$
, for all $k \in \{1, \dots, K\}$.

- Interpretation:
 - All agents agree on a single optimal parameter z.
 - Solvable with only local communication (e.g., with neighbors).

Table of Contents

Projected gradient methods

Convergence of projected gradient methods

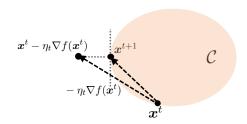
Everyday analogy

Projected Gradient Descent = "walk downhill, then return inside fence if you cross the boundary".

PROJECTED GRADIENT DESCENT

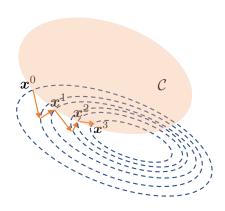
Why projection?

- A gradient step may take us outside the feasible set C
- Projection brings us back to the closest feasible point
- If C is simple (ball, box, simplex), projection is cheap



Projected gradient descent

 works well if projection onto C can be computed efficiently



for
$$t = 0, 1, \dots$$
:

$$\mathbf{x}^{t+1} = \mathcal{P}_{\mathcal{C}}(\mathbf{x}^t - \eta_t \nabla f(\mathbf{x}^t))$$

where $\mathcal{P}_{\mathcal{C}}(\mathbf{x}) := \arg\min_{\mathbf{z} \in \mathcal{C}} ||\mathbf{x} - \mathbf{z}||_2^2$ is Euclidean projection onto \mathcal{C} .

quadratic minimization

Examples of simple projections

• ℓ_2 -ball: (just rescale if outside the ball)

$$\mathcal{C} = \{\mathbf{x} : \|\mathbf{x}\|_2 \le R\}, \quad \mathcal{P}_{\mathcal{C}}(\mathbf{y}) = \min\left(1, \frac{R}{\|\mathbf{y}\|_2}\right)\mathbf{y}$$

Box constraints: (component-wise clipping)

$$C = [I, u]^n$$
, $\mathcal{P}_C(\mathbf{y}) = \min(\max(\mathbf{y}, I), u)$

Consensus constraint: (average the disagreement)

$$C = \{(\mathbf{x}_1, \dots, \mathbf{x}_K) : \mathbf{x}_k = \mathbf{z} \text{ for all } k, \text{ for some } \mathbf{z}\}$$

The projection operator $\mathcal{P}_{\mathcal{C}}(\mathbf{x}_1,\ldots,\mathbf{x}_K)_k = \frac{1}{K}\sum_{j=1}^K \mathbf{x}_j$

Application: Distributed gradient descent (DGD)

- **Goal:** Minimize a global sum of functions $f(\mathbf{w}) = \sum_{k=1}^{K} f_k(\mathbf{w})$, where each f_k is known only to agent k.
- **Each** agent k maintains its own local estimate \mathbf{w}_k .
- **Feasible Set** C: The consensus space.

$$\mathcal{C} = \{(\mathbf{w}_1, \dots, \mathbf{w}_K) : \mathbf{w}_1 = \mathbf{w}_2 = \dots = \mathbf{w}_K\}$$

The DGD Iteration (Conceptual)

At each time t, DGD performs two main steps for each agent k:

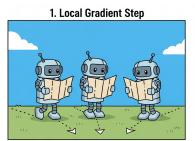
- 1. **Local gradient:** Take a step based on its own local objective f_k .
- 2. **Consensus:** Communicate with neighbors and average parameters.

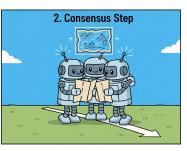
Everyday analogy

The DGD Iteration (Conceptual)

At each time t, DGD performs two main steps for each agent k:

- 1. **Local gradient:** Take a step based on its own local objective f_k .
- 2. **Consensus:** Communicate with neighbors and average parameters.





View DGD as Projected GD

Concatenate all agents' parameters: $\mathbf{W} = (\mathbf{w}_1^\top, \dots, \mathbf{w}_K^\top)^\top$.

Unconstrained GD: Each agent k runs a gradient step on f_k :

$$\mathbf{y}_k^{t+1} = \mathbf{w}_k^t - \eta \nabla f_k(\mathbf{w}_k^t)$$

The combined unconstrained step is $\mathbf{Y}^{t+1} = (\mathbf{y}_1^{t+1\top}, \dots, \mathbf{y}_K^{t+1\top})^{\top}$.

Projection: To enforce the consensus, DGD explicitly projects vectors $(\mathbf{y}_1, \dots, \mathbf{y}_K)$ onto the consensus set \mathcal{C} is given by **average**:

$$\mathcal{P}_{\mathcal{C}}(\mathbf{Y}^{t+1})_k = \frac{1}{K} \sum_{j=1}^K \mathbf{y}_j^{t+1} = \mathbf{y}^{t+1}$$

This is the exact "averaging step" in many DGD algorithms.

The DGD update is precisely $(\nabla \mathbf{F}(\mathbf{W}^t) = (\nabla f_1(\mathbf{w}_1^t)^\top, \dots, \nabla f_K(\mathbf{w}_K^t)^\top)^\top)$

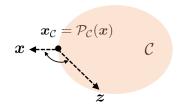
$$\mathbf{W}^{t+1} = \mathcal{P}_{\mathcal{C}}(\mathbf{W}^t - \eta
abla \mathbf{F}(\mathbf{W}^t))$$

Key insights: Projection theorem

Fact (Projection theorem)

Let $\mathcal C$ be closed & convex. Then $\textbf{x}_{\mathcal C}$ is the projection of x onto $\mathcal C$ iff

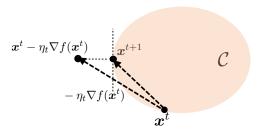
$$(\boldsymbol{x} - \boldsymbol{x}_{\mathcal{C}})^{\top}(\boldsymbol{z} - \boldsymbol{x}_{\mathcal{C}}) \leq 0, \quad \text{for all } \boldsymbol{z} \in \mathcal{C}$$



Intuition: The vector from \mathbf{x} to its projection $\mathbf{x}_{\mathcal{C}}$ is always **orthogonal or pointing inward** relative to \mathcal{C} . This guarantees that projection moves us back into the feasible set without "losing descent information."

Aligned with descent direction

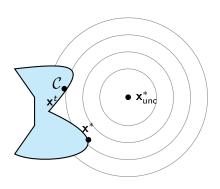
$$(\mathbf{x} - \mathbf{x}_{\mathcal{C}})^{\top}(\mathbf{z} - \mathbf{x}_{\mathcal{C}}) \leq 0$$
, for $\mathbf{z} := \mathbf{x}^{t}$, $\mathbf{x} := \mathbf{x}^{t} - \eta_{t} \nabla f(\mathbf{x}^{t})$, $\mathbf{x}_{\mathcal{C}} := \mathbf{x}^{t+1}$



$$-\nabla f(\mathbf{x}^t)^{\top}(\mathbf{x}^{t+1}-\mathbf{x}^t) \geq 0$$

 \implies $\mathbf{x}^{t+1} - \mathbf{x}^t$ is positively correlated with the steepest descent direction

Why convexity is crucial?



- 1. The steepest descent direction $-\nabla f(\mathbf{x}^t)$ points across the "gap."
- 2. A normal gradient step takes us to an infeasible point \mathbf{y}^{t+1} .
- 3. The **closest** point in C is \mathbf{x}^{t+1} , which is on the other side of the gap.

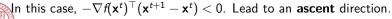


Table of Contents

Projected gradient methods

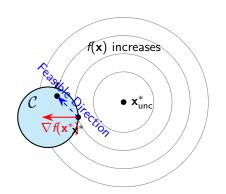
Convergence of projected gradient methods

Strongly convex and smooth problems

$$\min_{\mathbf{x}} f(\mathbf{x})$$
 subject to $\mathbf{x} \in \mathcal{C}$

- $f(\cdot)$: μ -strongly convex and L-smooth
- $\mathcal{C} \subseteq \mathbb{R}^n$: closed and convex

Optimality in constrained optimization

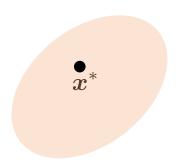


- For unconstrained problems, the optimality condition is that $\nabla f(\mathbf{x}^*) = \mathbf{0}$.
- In constrained problems, the true minimum x^{*}_{unc} might be outside the feasible set C.
- The optimal feasible solution \mathbf{x}^* is often on the boundary, at the point closest to the true minimum, but $\nabla f(\mathbf{x}^*) \neq \mathbf{0}$

At the optimal solution \mathbf{x}^* , any feasible step (from \mathbf{x}^* to another point $\mathbf{z} \in \mathcal{C}$) cannot be a descent direction. Mathematically, this means:

$$abla f(\mathbf{x}^*)^{ op}(\mathbf{z}-\mathbf{x}^*) \geq 0, \quad \text{for all} \mathbf{z} \in \mathcal{C}$$

Convergence for strongly convex and smooth problems



Let's start with the case when \mathbf{x}^* lies in the interior of \mathcal{C} (so $\nabla f(\mathbf{x}^*) = 0$)

Convergence for strongly convex and smooth problems

Theorem 5

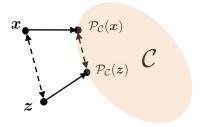
Suppose $\mathbf{x}^* \in \operatorname{int}(\mathcal{C})$ such that $\nabla f(\mathbf{x}^*) = \mathbf{0}$, and let f be μ -strongly convex and L-smooth. If $\eta_t = \frac{2}{\mu + L}$, then

$$||\mathbf{x}^t - \mathbf{x}^*||_2 \le \left(\frac{\kappa - 1}{\kappa + 1}\right)^t ||\mathbf{x}^0 - \mathbf{x}^*||_2$$

where $\kappa = L/\mu$ is condition number.

■ the same convergence rate as for the unconstrained case

Aside: nonexpansiveness of projection operator



Fact 6 (Nonexpansiveness of projection)

For any \mathbf{x} and \mathbf{z} , one has

$$||\mathcal{P}_{\mathcal{C}}(\boldsymbol{x}) - \mathcal{P}_{\mathcal{C}}(\boldsymbol{z})||_2 \leq ||\boldsymbol{x} - \boldsymbol{z}||_2$$

Proof of Theorem 5

We have shown for the unconstrained case that

$$||\mathbf{x}^{t+1} - \mathbf{x}^*||_2 = ||\mathbf{x}^t - \eta_t \nabla f(\mathbf{x}^t) - \mathbf{x}^*||_2 \le \frac{\kappa - 1}{\kappa + 1} ||\mathbf{x}^t - \mathbf{x}^*||_2$$

From the nonexpansiveness of $\mathcal{P}_{\mathcal{C}}$, we know

$$\begin{aligned} ||\mathbf{x}^{t+1} - \mathbf{x}^*||_2 &= ||\mathcal{P}_{\mathcal{C}}(\mathbf{x}^t - \eta_t \nabla f(\mathbf{x}^t)) - \mathcal{P}_{\mathcal{C}}(\mathbf{x}^*)||_2 \\ &\leq ||\mathbf{x}^t - \eta_t \nabla f(\mathbf{x}^t) - \mathbf{x}^*||_2 \\ &= ||\mathbf{x}^t - \eta_t \nabla f(\mathbf{x}^t) - \mathbf{x}^* + \eta_t \nabla f(\mathbf{x}^*)||_2 \\ &\leq \frac{\kappa - 1}{\kappa + 1} ||\mathbf{x}^t - \mathbf{x}^*||_2 \end{aligned}$$

Apply it recursively to conclude the proof.

Convergence for strongly convex and smooth problems

What happens if we don't know whether $\mathbf{x}^* \in \text{int}(\mathcal{C})$?

lacktriangledown main issue: $\nabla f(\mathbf{x}^*)$ may not be $\mathbf{0}$ (so prior analysis might fail)

The fixed-point condition of optimality

An optimal point x^* is a **fixed point** of the projected gradient descent.

If you are at the optimum, it means:

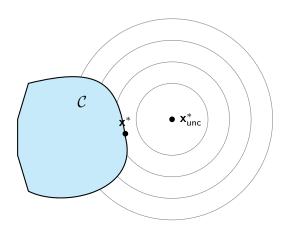
- 1. A gradient step $-\eta \nabla f(\mathbf{x}^*)$ points away from the feasible set \mathcal{C} .
- 2. Projecting this back onto $\ensuremath{\mathcal{C}}$ lands you exactly where you started.

A point \mathbf{x}^* is optimal if and only if it satisfies:

Fixed-point equation
$$\mathbf{x}^* = \mathcal{P}_{\mathcal{C}}(\mathbf{x}^* - \eta \nabla f(\mathbf{x}^*))$$
, for all $\eta \geq 0$

This provides a clean way to analyze convergence.

The fixed-point condition of optimality



Fixed-point equation $\mathbf{x}^* = \mathcal{P}_{\mathcal{C}}(\mathbf{x}^* - \eta \nabla f(\mathbf{x}^*))$, for all $\eta \geq 0$

Convergence for strongly convex and smooth problems

Theorem 7 (projected GD for strongly convex and smooth)

Let f be μ -strongly convex and L-smooth. If $\eta_t \equiv \eta = \frac{1}{L}$, then

$$||\mathbf{x}^t - \mathbf{x}^*||_2^2 \le \left(\frac{\kappa - 1}{\kappa + 1}\right)^t ||\mathbf{x}^0 - \mathbf{x}^*||_2^2$$

same convergence guarantees as Theorem 5

Proof of Theorem 7

From the nonexpansiveness of $\mathcal{P}_{\mathcal{C}}$ and the fixed-point condition, we know

$$\begin{aligned} ||\mathbf{x}^{t+1} - \mathbf{x}^*||_2 &= ||\mathcal{P}_{\mathcal{C}}(\mathbf{x}^t - \eta_t \nabla f(\mathbf{x}^t)) - \mathcal{P}_{\mathcal{C}}(\mathbf{x}^* - \eta_t \nabla f(\mathbf{x}^*))||_2 \\ &\leq ||\mathbf{x}^t - \eta_t \nabla f(\mathbf{x}^t) - (\mathbf{x}^* - \eta_t \nabla f(\mathbf{x}^*))||_2 \\ &= ||\mathbf{x}^t - \mathbf{x}^* - \eta_t (\nabla f(\mathbf{x}^t) - \nabla f(\mathbf{x}^*))||_2 \\ &\leq \frac{\kappa - 1}{\kappa + 1} ||\mathbf{x}^t - \mathbf{x}^*||_2. \end{aligned}$$

Apply it recursively to conclude the proof.

Convex and smooth problems

$$\min_{\mathbf{x}} f(\mathbf{x})$$
 subject to $\mathbf{x} \in \mathcal{C}$

- $f(\cdot)$: convex and L-smooth
- lacksquare $\mathcal{C}\subseteq\mathbb{R}^n$: closed and convex

Convergence for convex and smooth problems

Theorem 8 (projected GD for convex and smooth problems)

Let f be convex and L-smooth. If $\eta_t \equiv \eta = \frac{1}{L}$ then

$$f(\mathbf{x}^t) - f(\mathbf{x}^*) \le \frac{3L||\mathbf{x}^0 - \mathbf{x}^*||_2^2 + f(\mathbf{x}^0) - f(\mathbf{x}^*)}{t+1}$$

- similar convergence rate as for the unconstrained case
- a formal proof is provided for ECE 7290 students

Proof of Theorem 8*

We first recall our main steps when handling the unconstrained case:

1. **Step 1:** show cost improvement

$$f(x^{t+1}) \le f(x^t) - \frac{1}{2L} ||\nabla f(x^t)||_2^2$$

2. **Step 2:** connect $||\nabla f(\mathbf{x}^t)||_2$ with $f(\mathbf{x}^t)$

$$||\nabla f(x^t)||_2 \ge \frac{f(x^t) - f(x^*)}{||x^t - x^*||_2} \ge \frac{f(x^t) - f(x^*)}{||x^0 - x^*||_2}$$

3. **Step 3:** let $\Delta_t := f(\mathbf{x}^t) - f(\mathbf{x}^*)$ to get

$$\Delta_{t+1} - \Delta_t \le -\frac{\Delta_t^2}{2L||x^0 - x^*||_2^2}$$

and complete the proof by induction.

We then modify these steps for the constrained case. As before, set $g_{\mathcal{C}}(\mathbf{x}^t) = L(\mathbf{x}^t - \mathbf{x}^{t+1})$, which generalizes $\nabla f(\mathbf{x}^t)$ in constrained case.

1. **Step 1:** show cost improvement

$$f(x^{t+1}) \le f(x^t) - \frac{1}{2L} ||g_{\mathcal{C}}(x^t)||_2^2$$

2. **Step 2:** connect $||g_{\mathcal{C}}(\mathbf{x}^t)||_2$ with $f(\mathbf{x}^t)$

$$||g_{\mathcal{C}}(x^{t})||_{2} \ge \frac{f(x^{t+1}) - f(x^{*})}{||x^{t} - x^{*}||_{2}} \ge \frac{f(x^{t+1}) - f(x^{*})}{||x^{0} - x^{*}||_{2}}$$

3. **Step 3:** let $\Delta_t := f(\mathbf{x}^t) - f(\mathbf{x}^*)$ to get

$$\Delta_{t+1} - \Delta_t \le -\frac{\Delta_{t+1}^2}{2L||x^0 - x^*||_2^2}$$

Generalize smoothness condition (under convexity) as follows

Lemma 9

Suppose f is convex and L-smooth. For any $\mathbf{x},\mathbf{y}\in\mathcal{C}$, let

$$\mathbf{x}^+ = \mathcal{P}_{\mathcal{C}}(\mathbf{x} - \frac{1}{L}\nabla f(\mathbf{x}))$$

and $g_{\mathcal{C}}(\mathbf{x}) = L(\mathbf{x} - \mathbf{x}^+)$. Then

$$f(\mathbf{y}) \geq f(\mathbf{x}^+) + g_{\mathcal{C}}(\mathbf{x})^\top (\mathbf{y} - \mathbf{x}) + \frac{1}{2L} ||g_{\mathcal{C}}(\mathbf{x})||_2^2$$

Step 1: set $\mathbf{x} = \mathbf{y} = \mathbf{x}^t$ in Lemma 9 to reach

$$f(\mathbf{x}^t) \geq f(\mathbf{x}^{t+1}) + \frac{1}{2L}||g_{\mathcal{C}}(\mathbf{x}^t)||_2^2$$

as desired.

Step 2: set $\mathbf{x} = \mathbf{x}^t$ and $\mathbf{y} = \mathbf{x}^*$ in Lemma 9 to get

$$0 \ge f(\mathbf{x}^*) - f(\mathbf{x}^{t+1}) \ge g_{\mathcal{C}}(\mathbf{x}^t)^{\top}(\mathbf{x}^* - \mathbf{x}^t) + \frac{1}{2L}||g_{\mathcal{C}}(\mathbf{x}^t)||_2^2$$
$$\ge g_{\mathcal{C}}(\mathbf{x}^t)^{\top}(\mathbf{x}^* - \mathbf{x}^t)$$

which together with Cauchy-Schwarz yields

$$||g_{\mathcal{C}}(\mathbf{x}^t)||_2 \ge \frac{f(\mathbf{x}^{t+1}) - f(\mathbf{x}^*)}{||\mathbf{x}^t - \mathbf{x}^*||_2}$$
 (7)

It also follows from our analysis for the strongly convex case that (by taking $\mu={\rm 0}$ in Theorem 7)

$$||\mathbf{x}^t - \mathbf{x}^*||_2 \le ||\mathbf{x}^0 - \mathbf{x}^*||_2$$

which combined with (7) reveals

$$||g_{\mathcal{C}}(\mathbf{x}^t)||_2 \geq \frac{f(\mathbf{x}^{t+1}) - f(\mathbf{x}^*)}{||\mathbf{x}^0 - \mathbf{x}^*||_2}$$

Step 3: letting $\Delta_t = f(\mathbf{x}^t) - f(\mathbf{x}^*)$, the previous bounds together give

$$\Delta_{t+1} - \Delta_t \le -\frac{\Delta_{t+1}^2}{2L||\mathbf{x}^0 - \mathbf{x}^*||_2^2}$$

Use induction to finish the proof (which we omit here).

Proof of Lemma 9*

$$f(\mathbf{y}) - f(\mathbf{x}^{+}) = f(\mathbf{y}) - f(\mathbf{x}) - (f(\mathbf{x}^{+}) - f(\mathbf{x}))$$

$$\geq \underbrace{\nabla f(\mathbf{x})^{\top} (\mathbf{y} - \mathbf{x})}_{\text{convexity}} - \underbrace{\left(\nabla f(\mathbf{x})^{\top} (\mathbf{x}^{+} - \mathbf{x}) + \frac{L}{2} ||\mathbf{x}^{+} - \mathbf{x}||_{2}^{2}\right)}_{\text{smoothness}}$$

$$= \nabla f(\mathbf{x})^{\top} (\mathbf{y} - \mathbf{x}^{+}) - \frac{L}{2} ||\mathbf{x}^{+} - \mathbf{x}||_{2}^{2}$$

$$\geq g_{\mathcal{C}}(\mathbf{x})^{\top} (\mathbf{y} - \mathbf{x}^{+}) - \frac{L}{2} ||\mathbf{x}^{+} - \mathbf{x}||_{2}^{2} \quad (\text{by (6)})$$

$$= g_{\mathcal{C}}(\mathbf{x})^{\top} (\mathbf{y} - \mathbf{x}) + g_{\mathcal{C}}(\mathbf{x})^{\top} \underbrace{\left(\mathbf{x} - \mathbf{x}^{+}\right) - \frac{L}{2} ||\underbrace{\mathbf{x}^{+} - \mathbf{x}}_{= -\frac{1}{L}g_{\mathcal{C}}(\mathbf{x})}||_{2}^{2}}$$

$$= g_{\mathcal{C}}(\mathbf{x})^{\top} (\mathbf{y} - \mathbf{x}) + \frac{1}{2L} ||g_{\mathcal{C}}(\mathbf{x})||_{2}^{2}$$

Summary

projected gradient descent

	stepsize rule	convergence rate
convex & smooth	$\eta_t = rac{1}{L}$	$\mathcal{O}(rac{1}{t})$
strongly convex & smooth	$\eta_t = rac{1}{L}$	$\mathcal{O}((1-rac{1}{\kappa})^t)$

Recap and fine-tuning

- What we have talked about today?
 - ⇒ What are important constraints in distributed ML?
 - ⇒ How and why projected gradient descent works?
 - ⇒ How fast it converges compared to gradient descent?

Welcome anonymous survey!

