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Constrained convex problems

miny f(x)
subject to x € C

m f{-): convex function

m C C R"™ closed convex set
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Example: Constrained logistic regression

Why constrained problems in ML?

m Standard logistic regression minimizes
L
. T
min 21: log (1 + exp(—yw ' x;)).
=
m To avoid overfitting, we may constrain the weights:
w2 < R

m Interpretation:

Keeps parameters small = better generalization
Equivalent to weight regularization but fits in constrained form
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Example: Distributed learning with consensus

Why constrained problems in distributed systems?

m In distributed learning, the goal is to minimize a global loss function,
which is the sum of local losses f; from K different agents:

min Z Zlog 1 + exp(—yw, X,))

{wi}.z

m Each agent k has its own local parameter wy. To solve the global
problem, we must enforce a consensus constraint:

wy=2, forall ke{l,... K}

m Interpretation:

All agents agree on a single optimal parameter z.
T Solvable with only local communication (e.g., with neighbors).

©)
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Everyday analogy

m Projected Gradient Descent =
“walk downhill, then return inside fence if you cross the boundary".

PROJECTED GRADIENT DESCENT

CONSTRANT
\ VIOLATION!
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Why projection?

m A gradient step may take us
outside the feasible set C

m Projection brings us back to the
closest feasible point

m If C is simple (ball, box, simplex),
projection is cheap
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Projected gradient descent

m works well if projection onto C
can be computed efficiently

fort=0,1,---:
X" = Pe(xt — 9, VAXY)

where P¢(x) := arg min,ec ||x — z||3 is Euclidean projection onto C.

quadratic minimization
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Examples of simple projections

m />-ball: (just rescale if outside the ball)

) R
C={x:|xll2 <R}, Pely)= m'”<1’ |Y||2) Y

m Box constraints: (component-wise clipping)

C=1[hu" Pec(y)=min(max(y,]),u)

m Consensus constraint: (average the disagreement)

C ={(x1,...,xk) : x, = z for allk, for some z}
The projection operator Pe (X1, ..., Xk)k = %( jil X;
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Application: Distributed gradient descent (DGD)

m Goal: Minimize a global sum of functions iw) = Z,’le fr(w), where
each fy is known only to agent k.

m Each agent k maintains its own local estimate wy.

m Feasible Set C: The consensus space.

C:{(Wla""wK):Wl:W2:"':WK}

The DGD lteration (Conceptual)

At each time t, DGD performs two main steps for each agent k:
1. Local gradient: Take a step based on its own local objective fy.

2. Consensus: Communicate with neighbors and average parameters.

Y
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Everyday analogy

The DGD lIteration (Conceptual)

At each time t, DGD performs two main steps for each agent k:
1. Local gradient: Take a step based on its own local objective f.

2. Consensus: Communicate with neighbors and average parameters.

1. Local Gradient Step
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View DGD as Projected GD
T)T.

Concatenate all agents’ parameters: W = (w; ... S Wy

m Unconstrained GD: Each agent k runs a gradient step on fi:

i = wl — nVfi(w})
The combined unconstrained step is Y+ = (yf+1T 7y§;r1T)T_

m Projection: To enforce the consensus, DGD explicitly projects
vectors (yi,...,Yk) onto the consensus set C is given by average:

73 Yt+1 _ Z t+1 _ t

This is the exact "averaging step” in many DGD algorithms.
The DGD update is precisely (VF(W?) = (VA(w!)T, ..., Vi(wi)")T)

o= WEH = Pe(WE — 5 TF(WE))
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Key insights: Projection theorem

Fact (Projection theorem)

Let C be closed & convex. Then x¢ is the xc = Pe(x) C
" - T <@
projection of x onto C iff »\}\
(x—xc) (z—xc) <0, forallzeC \‘
z

Intuition: The vector from x to its projection x¢ is always orthogonal or
pointing inward relative to C. This guarantees that projection moves us
back into the feasible set without “losing descent information.”

&
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Aligned with descent direction

(x —xc)"(z—xc) <0, forz:=xt, x:=x'—nVAx), xc := x*?

—Vf(xt)T(XH-l _ Xt) > 0

— x™*1 — x! is positively correlated with the steepest descent direction
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Why convexity is crucial?

‘ d

1. The steepest descent direction —Vf(x?) points across the “gap.”
2. A normal gradient step takes us to an infeasible point y+1.

3. The closest point in C is x'™!, which is on the other side of the gap.

»In this case, —VAx!) T (x**! — x*) < 0. Lead to an ascent direction.
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Strongly convex and smooth problems

miny f(x)
subject to x €C

m f{-): p-strongly convex and L-smooth

m C C R"™ closed and convex
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Optimality in constrained optimization

m For unconstrained problems,
the optimality condition is that
VAx*)=0.

= In constrained problems, the
true minimum x;,. might be
outside the feasible set C.

m The optimal feasible solution x*
is often on the boundary, at the
point closest to the true
minimum, but VAx*) # 0

At the optimal solution x*, any feasible step (from x* to another point
z € C) cannot be a descent direction. Mathematically, this means:

)

VAx ) (z—x*) >0, forallzeC
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Convergence for strongly convex and smooth problems

80

Let's start with the case when x* lies in the interior of C (so VA(x*) = 0)
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Convergence for strongly convex and smooth problems

Theorem 5
Suppose x* € int(C) such that VAx*) = 0, and let f be u-strongly
convex and L-smooth. If n, = ﬁ then
—1\*
t o * < K 0 *
I = xle < (257 10 = x°ll

where k = L/ is condition number.

m the same convergence rate as for the unconstrained case
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Aside: nonexpansiveness of projection operator

T

%—-1 Pe(x)

Fact 6 (Nonexpansiveness of projection)

For any x and z, one has

IPe(x) = Pe(2)l]2 < [Ix — 2|2
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Proof of Theorem 5

We have shown for the unconstrained case that

k—1

1 ki =[xt — n, VAXE) — x* ||, <
el = [ = VA X'l <

X" = x|z

From the nonexpansiveness of Pc, we know

K=l = [[Peet — eV AxY) — Pex)] -
< [xt — eV Ax) — x|l
= It — eV AXY) = X+ 0 A 2
k—1
<
k41

[Ix" = x*[|2
Apply it recursively to conclude the proof.

)
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Convergence for strongly convex and smooth problems

Se

What happens if we don’t know whether x* € int(C)?
m main issue: Vf(x*) may not be 0 (so prior analysis might fail)

ECE 5290/7290 & ORIE 5290 23/38



The fixed-point condition of optimality

An optimal point x* is a fixed point of the projected gradient descent.
If you are at the optimum, it means:

1. A gradient step —yVf(x*) points away from the feasible set C.

2. Projecting this back onto C lands you exactly where you started.

A point x* is optimal if and only if it satisfies:
Fixed-point equation x* = P¢(x* — nVAx")), for alln >0
This provides a clean way to analyze convergence.

&
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The fixed-point condition of optimality

Fixed-point equation x* = P¢(x* — nVAx")), for all >0
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Convergence for strongly convex and smooth problems

Theorem 7 (projected GD for strongly convex and smooth)

Let f be u-strongly convex and L-smooth. If n, =n = % then

— 71\
I =x13 < (557) 10 - x'IB

m same convergence guarantees as Theorem 5

@
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Proof of Theorem 7

From the nonexpansiveness of P and the fixed-point condition, we know

[T = x*|2 = [[Pe(xF = neVAXY)) = Pe(x" — 1:V X))l
< [xF = e VAXY) — (x* = 0 VAX))2
= [Ix" = x" = n(VAX') = VAx))|l2
k—1
T k+1

X" = x7||2.

Apply it recursively to conclude the proof.
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Convex and smooth problems

miny f(x)
subject to x € C

m f{-): convex and L-smooth

m C C R"™ closed and convex
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Convergence for convex and smooth problems

Theorem 8 (projected GD for convex and smooth problems)
Let fbe convex and L-smooth. If 1, =7 = 1 then

3L|Ix% — x*[|3 + Ax%) — fix*)

) — ") < .

m similar convergence rate as for the unconstrained case
m a formal proof is provided for ECE 7290 students

)
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Proof of Theorem 8*

We first recall our main steps when handling the unconstrained case:

1. Step 1: show cost improvement

1) < ) — 5 IVA)I

2. Step 2: connect ||Vf(x')||2 with f{x")

||Vf(Xt)||2 > f(xt) — f()(K) > f(Xt) — f(X*)

[IxE =l |1 = x|z

3. Step 3: let A, := f{x!) — f{x*) to get
o a
2L[1x — x+[|3

‘ and complete the proof by induction.
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Proof of Theorem 8* (cont.)

We then modify these steps for the constrained case. As before, set

ge(xt) = L(x* — xt*1), which generalizes Vf(x!) in constrained case.

1. Step 1: show cost improvement

1) < ) — o llae ()13

2. Step 2: connect ||ge(x")|]2 with f(x?)

) — fix) X — Ax)

X =l [ =Xt

|lge(x)||2 >

3. Step 3: let A, := f{x!) — (x*) to get
Al

A A< ——
A VA PO

S

' " and complete the proof by induction.
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Proof of Theorem 8* (cont.)

Generalize smoothness condition (under convexity) as follows

Lemma 9

Suppose fis convex and L-smooth. For any x,y € C, let
n 1
= Pelx ~ 7 VAx))

and ge(x) = L(x — xT). Then

) > fx™) +8c0) (y — x) + o7 llac (I3
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Proof of Theorem 8* (cont.)

Step 1: set x =y = x' in Lemma 9 to reach

1
) = AxH) + - llge ()13
as desired.

Step 2: set x = x' and y = x* in Lemma 9 to get

* X 1
0> fx") — Ax"*) > ge(x) " (x* —x) + o1&t
> ge(xf) " (x* —x)
which together with Cauchy-Schwarz yields

A1) — fx)

[Ix = x*[2

(7)

|lge(x)|]2 >
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Proof of Theorem 8* (cont.)

It also follows from our analysis for the strongly convex case that (by
taking 1 = 0 in Theorem 7)

It = X[z < [Ix° = x|l
which combined with (7) reveals

Ax) — fix*)

t
>
|lge(x%)[|2 = 0 —x ]

Step 3: letting A; = f(x") — f{x*), the previous bounds together give
A2

t+1

A A< ——
LTS L)X — %3

Use induction to finish the proof (which we omit here).
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Proof of Lemma 9*

y) — fx™) = Ay) — () — (Ax*) — Ax))
> VAT (y — %) - (w(x) (¢ —x) + £l —x|2)
—_———

convexity

smoothness

= V)T (y ) gl xlB
> ge()T(y—x") 5 lx" —xIE (by (6)

— e ()T(y— %)+ 8e(x) T (x—x*) —=|| x* —x |2
———

=1gc(x) =—1gc(x)

= g0y %) + o lec()I3
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Summary

m projected gradient descent

stepsize rule

convergence rate

convex & smooth N =

O(3)

t

[l Gl ol ]

strongly convex & smooth Nt =

o((1 -2
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Recap and fine-tuning

m What we have talked about today?
= What are important constraints in distributed ML?
= How and why projected gradient descent works?
= How fast it converges compared to gradient descent?
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