
Distributed Optimization for Machine Learning
Lecture 7 - Gradient Methods for Constrained Problems

Tianyi Chen

School of Electrical and Computer Engineering
Cornell Tech, Cornell University

September 17, 2025

ECE 5290/7290 & ORIE 5290 2 / 38

Constrained convex problems

minx f(x)
subject to x ∈ C

f(·): convex function
C ⊆ Rn: closed convex set

ECE 5290/7290 & ORIE 5290 3 / 38

Example: Constrained logistic regression

Why constrained problems in ML?
Standard logistic regression minimizes

min
w

1
N

N∑
i=1

log
(
1 + exp(−yiw⊤xi)

)
.

To avoid overfitting, we may constrain the weights:

∥w∥2 ≤ R.

Interpretation:
• Keeps parameters small ⇒ better generalization
• Equivalent to weight regularization but fits in constrained form

ECE 5290/7290 & ORIE 5290 4 / 38

Example: Distributed learning with consensus

Why constrained problems in distributed systems?
In distributed learning, the goal is to minimize a global loss function,
which is the sum of local losses fk from K different agents:

min
{wk},z

K∑
k=1

1
Nk

Nk∑
i=1

log
(
1 + exp(−yiw⊤

k xi)
)
.

Each agent k has its own local parameter wk. To solve the global
problem, we must enforce a consensus constraint:

wk = z, for all k ∈ {1, . . . ,K}.

Interpretation:
• All agents agree on a single optimal parameter z.
• Solvable with only local communication (e.g., with neighbors).

ECE 5290/7290 & ORIE 5290 5 / 38

Table of Contents

Projected gradient methods

Convergence of projected gradient methods

ECE 5290/7290 & ORIE 5290 6 / 38

Everyday analogy
Projected Gradient Descent =
“walk downhill, then return inside fence if you cross the boundary”.

ECE 5290/7290 & ORIE 5290 7 / 38

Why projection?

A gradient step may take us
outside the feasible set C

Projection brings us back to the
closest feasible point

If C is simple (ball, box, simplex),
projection is cheap

Descent directionGradient descent (GD)

One of most important examples of (2.3): gradient descent

xt+1 = xt ≠ ÷tÒf(xt) (2.3)

• traced to Augustin Louis Cauchy ’1847 ...

• descent direction: dt = ≠Òf(xt)
• a.k.a. steepest descent, since from (2.1) and Cauchy-Schwarz,

arg min
d:ÎdÎ2Æ1

f Õ(x;d) = ≠ Òf(x)
ÎÒf(x)Î2¸ ˚˙ ˝

direction with greatest rate of cost improvement

Gradient methods (unconstrained) 2-5

Gradient descent (GD)

One of most important examples of (2.3): gradient descent

xt+1 = xt ≠ ÷tÒf(xt) (2.3)

• traced to Augustin Louis Cauchy ’1847 ...

• descent direction: dt = ≠Òf(xt)
• a.k.a. steepest descent, since from (2.1) and Cauchy-Schwarz,

arg min
d:ÎdÎ2Æ1

f Õ(x;d) = ≠ Òf(x)
ÎÒf(x)Î2¸ ˚˙ ˝

direction with greatest rate of cost improvement

Gradient methods (unconstrained) 2-5

Descent direction

Let yt = xt ≠ ÷tÒf(xt) be gradient update before projection. Then
Fact 3.2 implies

Òf(xt)€(xt+1 ≠ xt) = ÷≠1
t (xt ≠ yt)€(xt ≠ xt+1) Æ 0

xt+1 = PC(yt)

Gradient methods (constrained) 3-15

Descent direction

Let yt = xt ≠ ÷tÒf(xt) be gradient update before projection. Then
Fact 3.2 implies

Òf(xt)€(xt+1 ≠ xt) = ÷≠1
t (xt ≠ yt)€(xt ≠ xt+1) Æ 0

Gradient methods (constrained) 3-15

Descent direction

Fact 3.2 (Projection theorem)

Let C be closed convex set. Then xC is projection of x onto C i�

(x ≠ xC)€(z ≠ xC) Æ 0, ’z œ C

Gradient methods (constrained) 3-14

From the above figure, we know

−∇f(xt)>(xt+1 − xt) ≥ 0

xt+1 − xt is positively correlated with the steepest descent direction

Gradient methods (constrained case) 3-19

ECE 5290/7290 & ORIE 5290 8 / 38

Projected gradient descent

works well if projection onto C
can be computed efficiently

Projected gradient descent

x0 x1 x2 x3

Gradient methods 2-41

x0 x1 x2 x3

Gradient methods 2-41

x0 x1 x2 x3

Gradient methods 2-41

x0 x1 x2 x3

Gradient methods 2-41

The claim would follow immediately if

(x � x̃)>(z � z̃) � kz � z̃k2 (together with Cauchy-Schwarz)

(= (x � z � x̃ + z̃)>(z � z̃) � 0

(=

8
>>><
>>>:

h(z̃) � h (z) + hx � z| {z }
2@h(z)

, z � z̃i

h(z) � h(z̃) + hx̃ � z̃| {z }
2@h(z̃)

, z � z̃i

�1

2
k� � �1k2 + c1 � 1

2
k� � �2k2 + c2 �1 �2 prox(�1) prox(�2)

relative error
f(�t) + g(�t) � min{f(�) + g(�)}��min{f(�) + g(�)}

�� iteration t

⇥ =


⇥11 ✓12

✓>
12 ✓22

�
S =


S11 s12

s>
12 s22

�
W =


W11 w12

w>
12 w22

�

0 2 W11� � s12 + �@k✓12k1

C PC(�1) PC(�2)

4

works well if projection
onto C can be

computed efficiently

for t = 0, 1, · · · :
xt+1 = PC(xt − ηt∇f(xt))

where PC(x) := arg minz∈C ‖x− z‖22 is Euclidean projection︸ ︷︷ ︸
quadratic minimization

onto C

Gradient methods (constrained case) 3-17

for t = 0, 1, · · · :
xt+1 = PC(xt − ηt∇f(xt))

where PC(x) := argminz∈C ||x − z||22 is Euclidean projection︸ ︷︷ ︸
quadratic minimization

onto C.

ECE 5290/7290 & ORIE 5290 9 / 38

Examples of simple projections

ℓ2-ball: (just rescale if outside the ball)

C = {x : ∥x∥2 ≤ R}, PC(y) = min

(
1, R

∥y∥2

)
y

Box constraints: (component-wise clipping)

C = [l, u]n, PC(y) = min
(
max(y, l), u

)
Consensus constraint: (average the disagreement)

C = {(x1, . . . , xK) : xk = z for allk, for some z}

The projection operator PC(x1, . . . , xK)k = 1
K
∑K

j=1 xj

ECE 5290/7290 & ORIE 5290 10 / 38

Application: Distributed gradient descent (DGD)

Goal: Minimize a global sum of functions f(w) =
∑K

k=1 fk(w), where
each fk is known only to agent k.
Each agent k maintains its own local estimate wk.
Feasible Set C: The consensus space.

C = {(w1, . . . ,wK) : w1 = w2 = · · · = wK}

The DGD Iteration (Conceptual)
At each time t, DGD performs two main steps for each agent k:

1. Local gradient: Take a step based on its own local objective fk.
2. Consensus: Communicate with neighbors and average parameters.

ECE 5290/7290 & ORIE 5290 11 / 38

Everyday analogy

The DGD Iteration (Conceptual)
At each time t, DGD performs two main steps for each agent k:

1. Local gradient: Take a step based on its own local objective fk.
2. Consensus: Communicate with neighbors and average parameters.

ECE 5290/7290 & ORIE 5290 12 / 38

View DGD as Projected GD
Concatenate all agents’ parameters: W = (w⊤

1 , . . . ,w⊤
K)⊤.

Unconstrained GD: Each agent k runs a gradient step on fk:

yt+1
k = wt

k − η∇fk(wt
k)

The combined unconstrained step is Yt+1 = (yt+1⊤
1 , . . . , yt+1⊤

K)⊤.

Projection: To enforce the consensus, DGD explicitly projects
vectors (y1, . . . , yK) onto the consensus set C is given by average:

PC(Yt+1)k =
1
K

K∑
j=1

yt+1
j = �yt+1

This is the exact ”averaging step” in many DGD algorithms.

The DGD update is precisely (∇F(Wt) = (∇f1(wt
1)

⊤, . . . ,∇fK(wt
K)

⊤)⊤)

Wt+1 = PC(Wt − η∇F(Wt))

ECE 5290/7290 & ORIE 5290 13 / 38

Key insights: Projection theorem

Fact (Projection theorem)
Let C be closed & convex. Then xC is the
projection of x onto C iff

(x − xC)⊤(z − xC) ≤ 0, for all z ∈ C

Descent direction

Descent direction

xC = PC(x)

Nonexpansiveness of projection operator

PC(x) PC(z) x z

Gradient methods (constrained) 3-13

Descent direction

Fact 3.2 (Projection theorem)

Let C be closed convex set. Then xC is projection of x onto C i�

(x ≠ xC)€(z ≠ xC) Æ 0, ’z œ C

Gradient methods (constrained) 3-14

Nonexpansiveness of projection operator

Nonexpansiveness of projection operator

PC(x) PC(z) x z

Gradient methods (constrained) 3-13

The claim would follow immediately if

(x � x̃)�(z � z̃) � �z � z̃�2 (together with Cauchy-Schwarz)

�= (x � z � x̃ + z̃)�(z � z̃) � 0

�=

�
����
����

h(z̃) � h (z) + �x � z� �� �
��h(z)

, z � z̃�

h(z) � h(z̃) + �x̃ � z̃� �� �
��h(z̃)

, z � z̃�

�1

2
�� � �1�2 + c1 � 1

2
�� � �2�2 + c2 �1 �2 prox(�1) prox(�2)

relative error
f(�t) + g(�t) � min{f(�) + g(�)}��min{f(�) + g(�)}

�� iteration t

� =

�
�11 �12

��
12 �22

�
S =

�
S11 s12

s�
12 s22

�
W =

�
W11 w12

w�
12 w22

�

0 � W11� � s12 + ����12�1

C PC(�1) PC(�2)

4

Nonexpansiveness of projection operator

PC(x) PC(z) x z

Gradient methods (constrained) 3-13

Nonexpansiveness of projection operator

PC(x) PC(z) x z

Gradient methods (constrained) 3-13

Nonexpansiveness of projection operator

PC(x) PC(z) x z

Gradient methods (constrained) 3-13

Fact 3.3 (Nonexpansivness of projection)

For any x and z, one has ÎPC(x) ≠ PC(z)Î2 Æ Îx ≠ zÎ2

Gradient methods (constrained) 3-15

Nonexpansiveness of projection operator

PC(x) PC(z) x z

Gradient methods (constrained) 3-13

Fact 3.2 (Projection theorem)

Let C be closed convex set. Then xC is projection of x onto C i�
(x ≠ xC)€(z ≠ xC) Æ 0, ’z œ C

Gradient methods (constrained case) 3-14

Nonexpansiveness of projection operator

PC(x) PC(z) x z

Gradient methods (constrained) 3-13

Descent direction

Fact 3.2 (Projection theorem)

Let C be closed convex set. Then xC is projection of x onto C i�

(x ≠ xC)€(z ≠ xC) Æ 0, ’z œ C

Gradient methods (constrained) 3-14

Nonexpansiveness of projection operator

PC(x) PC(z) x z

Gradient methods (constrained) 3-13

Fact 3.4 (Projection theorem)

Let C be closed & convex. Then xC is the projection of x onto C iff
(x− xC)>(z − xC) ≤ 0, ∀z ∈ C

Gradient methods (constrained case) 3-18

Intuition: The vector from x to its projection xC is always orthogonal or
pointing inward relative to C. This guarantees that projection moves us
back into the feasible set without “losing descent information.”

ECE 5290/7290 & ORIE 5290 14 / 38

Aligned with descent direction

(x − xC)⊤(z − xC) ≤ 0, for z := xt, x := xt − ηt∇f(xt), xC := xt+1Descent directionGradient descent (GD)

One of most important examples of (2.3): gradient descent

xt+1 = xt ≠ ÷tÒf(xt) (2.3)

• traced to Augustin Louis Cauchy ’1847 ...

• descent direction: dt = ≠Òf(xt)
• a.k.a. steepest descent, since from (2.1) and Cauchy-Schwarz,

arg min
d:ÎdÎ2Æ1

f Õ(x;d) = ≠ Òf(x)
ÎÒf(x)Î2¸ ˚˙ ˝

direction with greatest rate of cost improvement

Gradient methods (unconstrained) 2-5

Gradient descent (GD)

One of most important examples of (2.3): gradient descent

xt+1 = xt ≠ ÷tÒf(xt) (2.3)

• traced to Augustin Louis Cauchy ’1847 ...

• descent direction: dt = ≠Òf(xt)
• a.k.a. steepest descent, since from (2.1) and Cauchy-Schwarz,

arg min
d:ÎdÎ2Æ1

f Õ(x;d) = ≠ Òf(x)
ÎÒf(x)Î2¸ ˚˙ ˝

direction with greatest rate of cost improvement

Gradient methods (unconstrained) 2-5

Descent direction

Let yt = xt ≠ ÷tÒf(xt) be gradient update before projection. Then
Fact 3.2 implies

Òf(xt)€(xt+1 ≠ xt) = ÷≠1
t (xt ≠ yt)€(xt ≠ xt+1) Æ 0

xt+1 = PC(yt)

Gradient methods (constrained) 3-15

Descent direction

Let yt = xt ≠ ÷tÒf(xt) be gradient update before projection. Then
Fact 3.2 implies

Òf(xt)€(xt+1 ≠ xt) = ÷≠1
t (xt ≠ yt)€(xt ≠ xt+1) Æ 0

Gradient methods (constrained) 3-15

Descent direction

Fact 3.2 (Projection theorem)

Let C be closed convex set. Then xC is projection of x onto C i�

(x ≠ xC)€(z ≠ xC) Æ 0, ’z œ C

Gradient methods (constrained) 3-14

From the above figure, we know

−∇f(xt)>(xt+1 − xt) ≥ 0

xt+1 − xt is positively correlated with the steepest descent direction

Gradient methods (constrained case) 3-19

−∇f(xt)⊤(xt+1 − xt) ≥ 0
=⇒ xt+1 − xt is positively correlated with the steepest descent direction

ECE 5290/7290 & ORIE 5290 15 / 38

Why convexity is crucial?

x∗unc
C

x∗
xt

1. The steepest descent direction −∇f(xt) points across the “gap.”
2. A normal gradient step takes us to an infeasible point yt+1.
3. The closest point in C is xt+1, which is on the other side of the gap.

In this case, −∇f(xt)⊤(xt+1 − xt) < 0. Lead to an ascent direction.

ECE 5290/7290 & ORIE 5290 16 / 38

Table of Contents

Projected gradient methods

Convergence of projected gradient methods

ECE 5290/7290 & ORIE 5290 17 / 38

Strongly convex and smooth problems

minx f(x)
subject to x ∈ C

f(·): µ-strongly convex and L-smooth
C ⊆ Rn: closed and convex

ECE 5290/7290 & ORIE 5290 18 / 38

Optimality in constrained optimization

x∗unc

f(x) increases

C
x∗∇f(x∗)

z
Feasible Direction

For unconstrained problems,
the optimality condition is that
∇f(x∗) = 0.
In constrained problems, the
true minimum x∗unc might be
outside the feasible set C.
The optimal feasible solution x∗
is often on the boundary, at the
point closest to the true
minimum, but ∇f(x∗) ̸= 0

At the optimal solution x∗, any feasible step (from x∗ to another point
z ∈ C) cannot be a descent direction. Mathematically, this means:

∇f(x∗)⊤(z − x∗) ≥ 0, for allz ∈ C

ECE 5290/7290 & ORIE 5290 19 / 38

Convergence for strongly convex and smooth problems

Convergence for strongly convex and smooth
problems

Proof of Lemma 2.5

It follows that

Îxt+1 ≠ xúÎ2
2 =

..xt ≠ xú ≠ ÷(Òf(xt) ≠ Òf(xú)¸ ˚˙ ˝
=0

)
..2

2

=
..xt ≠ xú..2

2 ≠ 2÷Èxt ≠ xú, Òf(xt) ≠ Òf(xú)Í¸ ˚˙ ˝
Ø 2÷

L ÎÒf(xt)≠Òf(xú)Î2
2 (smoothness)

+ ÷2..Òf(xt) ≠ Òf(xú)
..2

2

Æ
..xt ≠ xú..2

2 ≠ ÷2..Òf(xt) ≠ Òf(xú)
..2

2

Æ
..xt ≠ xú..2

2

Gradient methods 2-36

Let’s start with the simple case when x∗ lies in the interior of C (so
that ∇f(x∗) = 0)

Gradient methods (constrained case) 3-21

Let’s start with the case when x∗ lies in the interior of C (so ∇f(x∗) = 0)

ECE 5290/7290 & ORIE 5290 20 / 38

Convergence for strongly convex and smooth problems

Theorem 5
Suppose x∗ ∈ int(C) such that ∇f(x∗) = 0, and let f be µ-strongly
convex and L-smooth. If ηt =

2
µ+L , then

||xt − x∗||2 ≤
(
κ− 1
κ+ 1

)t
||x0 − x∗||2

where κ = L/µ is condition number.

the same convergence rate as for the unconstrained case

ECE 5290/7290 & ORIE 5290 21 / 38

Aside: nonexpansiveness of projection operatorAside: nonexpansiveness of projection operator

Nonexpansiveness of projection operator

PC(x) PC(z) x z

Gradient methods (constrained) 3-13

The claim would follow immediately if

(x � x̃)>(z � z̃) � kz � z̃k2 (together with Cauchy-Schwarz)

(= (x � z � x̃ + z̃)>(z � z̃) � 0

(=

8
>>><
>>>:

h(z̃) � h (z) + hx � z| {z }
2@h(z)

, z � z̃i

h(z) � h(z̃) + hx̃ � z̃| {z }
2@h(z̃)

, z � z̃i

�1

2
k� � �1k2 + c1 � 1

2
k� � �2k2 + c2 �1 �2 prox(�1) prox(�2)

relative error
f(�t) + g(�t) � min{f(�) + g(�)}��min{f(�) + g(�)}

�� iteration t

⇥ =


⇥11 ✓12

✓>
12 ✓22

�
S =


S11 s12

s>
12 s22

�
W =


W11 w12

w>
12 w22

�

0 2 W11� � s12 + �@k✓12k1

C PC(�1) PC(�2)

4

Nonexpansiveness of projection operator

PC(x) PC(z) x z

Gradient methods (constrained) 3-13

Nonexpansiveness of projection operator

PC(x) PC(z) x z

Gradient methods (constrained) 3-13

Nonexpansiveness of projection operator

PC(x) PC(z) x z

Gradient methods (constrained) 3-13

Fact 3.6 (Nonexpansivness of projection)

For any x and z, one has ‖PC(x)− PC(z)‖2 ≤ ‖x− z‖2

Gradient methods (constrained case) 3-23

Fact 6 (Nonexpansiveness of projection)
For any x and z, one has

||PC(x)− PC(z)||2 ≤ ||x − z||2

ECE 5290/7290 & ORIE 5290 22 / 38

Proof of Theorem 5

We have shown for the unconstrained case that

||xt+1 − x∗||2 = ||xt − ηt∇f(xt)− x∗||2 ≤ κ− 1
κ+ 1 ||x

t − x∗||2

From the nonexpansiveness of PC , we know

||xt+1 − x∗||2 = ||PC(xt − ηt∇f(xt))− PC(x∗)||2
≤ ||xt − ηt∇f(xt)− x∗||2
= ||xt − ηt∇f(xt)− x∗ + ηt∇f(x∗)||2

≤ κ− 1
κ+ 1 ||x

t − x∗||2

Apply it recursively to conclude the proof.

ECE 5290/7290 & ORIE 5290 23 / 38

Convergence for strongly convex and smooth problems
Convergence for strongly convex and smooth

problems

Proof of Lemma 2.5

It follows that

Îxt+1 ≠ xúÎ2
2 =

..xt ≠ xú ≠ ÷(Òf(xt) ≠ Òf(xú)¸ ˚˙ ˝
=0

)
..2

2

=
..xt ≠ xú..2

2 ≠ 2÷Èxt ≠ xú, Òf(xt) ≠ Òf(xú)Í¸ ˚˙ ˝
Ø 2÷

L ÎÒf(xt)≠Òf(xú)Î2
2 (smoothness)

+ ÷2..Òf(xt) ≠ Òf(xú)
..2

2

Æ
..xt ≠ xú..2

2 ≠ ÷2..Òf(xt) ≠ Òf(xú)
..2

2

Æ
..xt ≠ xú..2

2

Gradient methods 2-36

What happens if we don’t know whether x∗ ∈ int(C)?
• main issue: ∇f(x∗) may not be 0 (so prior analysis might fail)

Gradient methods (constrained case) 3-25

What happens if we don’t know whether x∗ ∈ int(C)?
main issue: ∇f(x∗) may not be 0 (so prior analysis might fail)

ECE 5290/7290 & ORIE 5290 24 / 38

The fixed-point condition of optimality

An optimal point x∗ is a fixed point of the projected gradient descent.

If you are at the optimum, it means:

1. A gradient step −η∇f(x∗) points away from the feasible set C.

2. Projecting this back onto C lands you exactly where you started.

A point x∗ is optimal if and only if it satisfies:

Fixed-point equation x∗ = PC(x∗ − η∇f(x∗)), for all η ≥ 0

This provides a clean way to analyze convergence.

ECE 5290/7290 & ORIE 5290 25 / 38

The fixed-point condition of optimality

x∗unc

C
x∗

Fixed-point equation x∗ = PC(x∗ − η∇f(x∗)), for all η ≥ 0

ECE 5290/7290 & ORIE 5290 26 / 38

Convergence for strongly convex and smooth problems

Theorem 7 (projected GD for strongly convex and smooth)
Let f be µ-strongly convex and L-smooth. If ηt ≡ η = 1

L , then

||xt − x∗||22 ≤
(
κ− 1
κ+ 1

)t
||x0 − x∗||22

same convergence guarantees as Theorem 5

ECE 5290/7290 & ORIE 5290 27 / 38

Proof of Theorem 7

From the nonexpansiveness of PC and the fixed-point condition, we know

||xt+1 − x∗||2 = ||PC(xt − ηt∇f(xt))− PC(x∗ − ηt∇f(x∗))||2
≤ ||xt − ηt∇f(xt)− (x∗ − ηt∇f(x∗))||2
= ||xt − x∗ − ηt(∇f(xt)−∇f(x∗))||2

≤ κ− 1
κ+ 1 ||x

t − x∗||2.

Apply it recursively to conclude the proof.

ECE 5290/7290 & ORIE 5290 28 / 38

Convex and smooth problems

minx f(x)
subject to x ∈ C

f(·): convex and L-smooth
C ⊆ Rn: closed and convex

ECE 5290/7290 & ORIE 5290 29 / 38

Convergence for convex and smooth problems

Theorem 8 (projected GD for convex and smooth problems)
Let f be convex and L-smooth. If ηt ≡ η = 1

L then

f(xt)− f(x∗) ≤ 3L||x0 − x∗||22 + f(x0)− f(x∗)
t + 1

similar convergence rate as for the unconstrained case
a formal proof is provided for ECE 7290 students

ECE 5290/7290 & ORIE 5290 30 / 38

ECE 5290/7290 & ORIE 5290 31 / 38

Proof of Theorem 8*
We first recall our main steps when handling the unconstrained case:

1. Step 1: show cost improvement

f(xt+1) ≤ f(xt)− 1
2L ||∇f(xt)||22

2. Step 2: connect ||∇f(xt)||2 with f(xt)

||∇f(xt)||2 ≥ f(xt)− f(x∗)
||xt − x∗||2

≥ f(xt)− f(x∗)
||x0 − x∗||2

3. Step 3: let ∆t := f(xt)− f(x∗) to get

∆t+1 −∆t ≤ − ∆2
t

2L||x0 − x∗||22
and complete the proof by induction.

ECE 5290/7290 & ORIE 5290 32 / 38

Proof of Theorem 8* (cont.)
We then modify these steps for the constrained case. As before, set
gC(xt) = L(xt − xt+1), which generalizes ∇f(xt) in constrained case.

1. Step 1: show cost improvement

f(xt+1) ≤ f(xt)− 1
2L ||gC(x

t)||22

2. Step 2: connect ||gC(xt)||2 with f(xt)

||gC(xt)||2 ≥ f(xt+1)− f(x∗)
||xt − x∗||2

≥ f(xt+1)− f(x∗)
||x0 − x∗||2

3. Step 3: let ∆t := f(xt)− f(x∗) to get

∆t+1 −∆t ≤ −
∆2

t+1
2L||x0 − x∗||22

and complete the proof by induction.

ECE 5290/7290 & ORIE 5290 33 / 38

Proof of Theorem 8* (cont.)

Generalize smoothness condition (under convexity) as follows

Lemma 9
Suppose f is convex and L-smooth. For any x, y ∈ C, let

x+ = PC(x − 1
L∇f(x))

and gC(x) = L(x − x+). Then

f(y) ≥ f(x+) + gC(x)⊤(y − x) + 1
2L ||gC(x)||

2
2

ECE 5290/7290 & ORIE 5290 34 / 38

Proof of Theorem 8* (cont.)

Step 1: set x = y = xt in Lemma 9 to reach

f(xt) ≥ f(xt+1) +
1
2L ||gC(x

t)||22

as desired.

Step 2: set x = xt and y = x∗ in Lemma 9 to get

0 ≥ f(x∗)− f(xt+1) ≥ gC(xt)⊤(x∗ − xt) +
1
2L ||gC(x

t)||22

≥ gC(xt)⊤(x∗ − xt)

which together with Cauchy-Schwarz yields

||gC(xt)||2 ≥ f(xt+1)− f(x∗)
||xt − x∗||2

(7)

ECE 5290/7290 & ORIE 5290 35 / 38

Proof of Theorem 8* (cont.)

It also follows from our analysis for the strongly convex case that (by
taking µ = 0 in Theorem 7)

||xt − x∗||2 ≤ ||x0 − x∗||2

which combined with (7) reveals

||gC(xt)||2 ≥ f(xt+1)− f(x∗)
||x0 − x∗||2

Step 3: letting ∆t = f(xt)− f(x∗), the previous bounds together give

∆t+1 −∆t ≤ −
∆2

t+1
2L||x0 − x∗||22

Use induction to finish the proof (which we omit here).

ECE 5290/7290 & ORIE 5290 36 / 38

Proof of Lemma 9*

f(y)− f(x+) = f(y)− f(x)− (f(x+)− f(x))

≥ ∇f(x)⊤(y − x)︸ ︷︷ ︸
convexity

−
(
∇f(x)⊤(x+ − x) + L

2 ||x
+ − x||22

)
︸ ︷︷ ︸

smoothness

= ∇f(x)⊤(y − x+)− L
2 ||x

+ − x||22

≥ gC(x)⊤(y − x+)− L
2 ||x

+ − x||22 (by (6))

= gC(x)⊤(y − x) + gC(x)⊤ (x − x+)︸ ︷︷ ︸
= 1

L gC(x)

−L
2 || x+ − x︸ ︷︷ ︸

=− 1
L gC(x)

||22

= gC(x)⊤(y − x) + 1
2L ||gC(x)||

2
2

ECE 5290/7290 & ORIE 5290 37 / 38

Summary

projected gradient descent

stepsize rule convergence rate
convex & smooth ηt =

1
L O(1

t)

strongly convex & smooth ηt =
1
L O((1 − 1

κ)
t)

Recap and fine-tuning

What we have talked about today?
⇒ What are important constraints in distributed ML?
⇒ How and why projected gradient descent works?
⇒ How fast it converges compared to gradient descent?

Welcome anonymous survey!

	Projected gradient methods
	Convergence of projected gradient methods

