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Gradient descent (GD)

A building block of this course: gradient descent

x = xt — , VAx")

AUGUSTIN-LOUIS CAUCHY

m traced to Augustin Louis
Cauchy '1847 ...
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Dropping strong convexity

Without strong convexity, it may often be better to focus on objective
improvement (rather than improvement on estimation error).

Example: consider f{x) = 1/x (x > 0). GD iterates {x'} might never
converge to x* = co. In comparison, f(x") might approach f{x*) = 0.
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Objective improvement and stepsize

Question:

m can we ensure reduction of the objective value
(i.e. Ax*1) < f(x?)) without strong convexity?

m what stepsizes guarantee sufficient decrease?

Key idea: majorization-minimization

m find a simple majorizing (quadratic) function of f{x) and optimize it
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Majorization-Minimization principle

The idea is to replace a complex problem with a sequence of simpler ones.

g(%; x*) (easy to minimize)

f(x) (hard to minimize)

Guaranteed Descent
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Find a majorizing (quadratic) function of f(x)

From the L-smoothness assumption,
t t t\ T t L t)|2
flx) < g(x;x") := fx) + VAX) " (x = x7) + S flx = x7|l2
Recall the gradient descent recursion
Xt+1 _ Xt _ ntvf(xt)

We replace x with xt*1

X4 < M)+ VAT (6 = x) 4 2t = 3

_ oy TR L
= fx) =l VAl + - [[VAX)Il2

majorizing function of objective reduction due to smoothness
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Objective improvement and stepsize

From the smoothness assumption,

x) — fx) < V)T - x) + 5

t1_ t])2
5 x'[[3

I
2
= e[ VA + IIVf(Xt)Hz

majorizing function of objective reduction due to smoothness

(pick 7 = 1/L to minimize the majorizing function)

1
= IV
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Objective improvement

Fact 7 Suppose fis L-smooth. Then GD with n; = 1/L obeys

xt) < () — 5V A I3

m for n; sufficiently small, GD results in improvement in the objective

m does NOT rely on convexity!
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Make connections to ETA

:10-8:20

30 60 90t/

Trip 1: Estimated to arrive in [8:17, 8:22] with a
confidence level of 90%

Trip 2: Estimated to arrive in [8:40, 8:54] with a

confidence level of 90% Y

RS |

H
ES 3
v ,,
Vi

Miles per hour vs Improvement per iteration
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How far from the destination?

Condition 1: [[VAX)|[3 > c(Ax) — A x* 1)), forall x.
Condition 2: ||[VAX)||3 > c(Ax) — A x* ))?, forall x.

minimizer

Which condition describes a "sharper” or "steeper” minimum?
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Condition 1: Steep curvature

= Steep curvature: ||VA(x)|3 > c(fx) — f(x*))

m Interpretation: The squared gradient is at least linearly
proportional to the optimality gap.

Example: flx) = x2
m Analogy: This describes a sharp, ‘
V-shaped valley or a quadratic
bowl. The slope is always
significant as long as you are not at

the minimum. =

=T

m Result: Guarantees fast (linear)
convergence. All strongly convex 5 0 5
functions satisfy this.

o N ~ >
T
|
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Strong convexity = Steep curvature

For a u-strongly convex function f, the following holds for all x, y:
1
fly) > fix) + VAx) " (y = %) + Slly = x]3 (1)

Let's find the value of y that minimizes it:

VAX) +uly =x) =0 — ¥ =x— V1Y
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Strong convexity = Steep curvature

For a u-strongly convex function f, the following holds for all x, y:
]
fly) > fix) + VAx) " (y = %) + Slly = x]3 (1)
Let's find the value of y that minimizes it:
. 1
VAx) +uly —x) =0 = y" =x— ;Vf(X)
f(x*) must be not smaller than the minimum value of the RHS of (1).
") 2 min [fx) + VAx)"(y = %) + 5 ly = xI]

— fix) - iuwx)n%

= f{x) + VAx)" (—%Vf(X)) +£ H—iv"(x)

earranging leads to the steep curvature condition with constant ¢ = 2u.
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Condition 2: Flat curvature

= Flat curvature: ||VAx)|3 > c(Ax) — f(X*))2

m Interpretation: The squared gradient is proportional to the square
of the optimality gap.

Example: fx) = x*

m Analogy: This describes a

T T T
flat-bottomed canyon. The slope 15
can become extremely gentle near
the minimum, even if the function = 10} N
value is not yet optimal. =
5 [ |
Very flat region
m Result: Can lead to very slow 0
. = | | -
(sublinear) convergence. 5 -1 o 1 5
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Convexity = Flat curvature
The convexity states that for any x* and the minimizer x*:
f(x*) > f{x') + VAx) " (x* —x°)
Rearranging this gives us a lower bound on the optimality gap:

fix) — fix") < VAx) T (x* —x7) ()
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Convexity = Flat curvature

The convexity states that for any x* and the minimizer x*:

fix*) > f(x) + VAx") " (x* —x)
Rearranging this gives us a lower bound on the optimality gap:

fix) — f(x*) < VA" (x* —x") ()
We can bound the right-hand side of (2) using Cauchy-Schwarz:

fx) = x") < VAX) T (x = x7) < [VAX)2x" ~ %2
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Convexity = Flat curvature

The convexity states that for any x* and the minimizer x*:
fix*) > f(x) + VAx") " (x* —x)
Rearranging this gives us a lower bound on the optimality gap:
fix) — f(x*) < VA" (x* —x") ()
We can bound the right-hand side of (2) using Cauchy-Schwarz:
fix) — f(x") < VAX) T (x* = x*) < [[VAX)[2][x" = %"
Rearranging the terms gives us a lower bound on the gradient norm:

vl > T

Now, we assume [|xt — x*||2 < [|x® — x*||2 for all t > 0. This is a

edsonable assumption for GD on convex functions (prove later).
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Linear convergence under steep curvature

From the per-iteration objective improvement

A1) — () £ ) — ) — 5[ VA) 2
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Linear convergence under steep curvature

From the per-iteration objective improvement

A1) — () £ ) — ) — 5[ VA) 2

< ) ) - () - Ax))

= (1-7) (fx) — fx"))

where (i) follows from Fact 7, and (ii) comes from the so-called
Polyak-Lojasiewicz (PL) condition (implied by strong convexity)

VAR = 20(fx) = R x°_ ), forall x.

minimizer

Apply it recursively to obtain the linear convergence of f{x!) — f{x*).
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Improvement in estimation accuracy

GD is not only improving the objective value, but is also dragging the
iterates towards minimizer(s), as long as 7, is not too large.

Vo ||x* — x*||2 is monotonically
, | nonincreasing in t

Treating f as 0-strongly convex, we can see from our previous analysis for
strongly convex problems that

[ —x*][o < [|x" = x*[]2

17/50
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Improvement in estimation accuracy

One can further show that ||x* — x*||2 is strictly decreasing unless x* is
already the minimizer.

Fact 8 Let f be convex and L-smooth. If n; =n = 1/L, then
t+1 * |2 t *|2 1 t\[|2
[ = x"]f; < [lx" = x7[lz = VA

where x* is any minimizer of f{-).
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Proof of Fact 8*

It follows that

x5 — x*[[3 = [|x* — x* — n(VAx') — VAx))||3
S~——
=0
= ||x* — x*|[3 — 2n(x" — x*, VAx') — VAx"))
+ 2l VAX') — VX

<= x*[3 = TNIVAX) = VAX)E +07 || VAX) = VAX)[3

> (smooth+-cvx)

=[x = x|l = ZIIVAX) = VAX)[[5 (since n = 1/1)
N——

=0
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Monotonicity of gradient sizes

When n, = 1/L, gradient sizes are also monotonically non-increasing.

Lemma 9 Let f be convex and smooth. If n, =n = 1/L, then GD
obeys
IVAX |2 < [[VRX)| 2

As a result, GD enjoys at least 3 types of monotonicity as t grows:
m objective value f(x*) N\,
m estimation error ||x* — x*|[2 N\
m gradient size [|[VAX")|]2 N\
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Proof of Lemma 9*

Recall that the fundamental theorem of calculus gives

1
VAxT) = VAxY) +/0 V2f(x,)(x*! — xt)dr

1
= (I - n/o sz(xT)dT> VAxY),

=B

where x, := x? + 7(x'*! — x?). When < 1/L, it is easily seen that
0=B=<l = 0=<B*=<I

Hint: The spectral norm of | — nV>f(x,) is its largest eigenvalue.
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Convergence rate for convex and smooth problems

However, without strong convexity, convergence is typically much slower
than linear (or geometric) convergence.

Theorem 10 (GD for convex and smooth problems)
Let fbe convex and L-smooth. If n, =n =1/L, then GD obeys

L 2L x|
- t

) — fix)

where x* is any minimizer of f(-).
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Proof of Theorem 10 (cont.)

From Fact 7, .
™) = f(x) <~ VAXY)]3

To infer {x") recursively, it is often easier to replace ||[VAx!)||2 with
simpler functions of f{x*). Use convexity and Cauchy-Schwarz to get

fx’) — fix*) Fact8 fx") — Ax")

[Ixf =l 7 X0 = x*2

IVAX)l2 =

Setting A; := f{x*) — f{x*) and combining the above bounds yield

1 1
A — A <—7A2:;—7A2
TS k0 — x| wo °
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Proof of Theorem 10 (cont.)

1
Dy <A — —A2
Wo
Dividing both sides by A:A;; and rearranging terms give

1 1 1 A
> 4=
A1:-&-1 Ay Wo A1:+1

IV
|
+
|

Ao oD T w (since Ay > Ayyq (Fact 7))

N 1 > 1 I t > t
Ay 7 Ay wo T w
wo 2L[|x°% — x*||3

Tt t

as claimed.
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Nonconvex problems are everywhere

Many empirical risk minimization tasks are nonconvex

min f(x; data)

low-rank matrix completion
blind deconvolution
dictionary learning

mixture models

learning deep neural nets

ECE 5290/7290 & ORIE 5290 26 /50



Challenges

m there may be bumps and local minima everywhere
® e.g. 1-layer neural net (Auer, Herbster, Warmuth '96; Vu '98)

m no algorithm can solve nonconvex problems efficiently in all cases

ECE 5290/7290 & ORIE 5290
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Typical convergence guarantees

We cannot hope for efficient global convergence to global minima in
general, but we may have

m convergence to stationary points (i.e. VA(x) =0)
m convergence to local minima

m local convergence to global minima (i.e. when initialized suitably)
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Making gradients small

Suppose we are content with any (approximate) stationary point ...

This means that our goal is merely to find a point x with

[|[VAX)|]2 < e (called c-approximate stationary point)

Question: can GD achieve this goal? If so, how fast?
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Making gradients small

Theorem 11 Let fbe L-smooth and ny =n =1/L. Assume t is even.

m In general, GD obeys

min [[VAx¥)||> < \/QL('C(XO) mizn)

0<k<t t

m If f{-) is convex, then GD obeys

4L||x° — x*||2

VAl < =

m Does not imply GD converges to stationary points; it only says that
3 approximate stationary point in the GD trajectory
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Proof of Theorem 11

From Fact 7, we know
1
ﬂllvﬂxk)\lﬁ < AxK) — fAx*),  for allk

This leads to a telescopic sum when summed over k =ty to k=t — 1:

LS 9918 = S0 - x40 = ) e

k=ty k=t

< fx®) — fx")

—  min [[VAXY)|2 <\/2L(f(xt°)_f(x*)) (11)

to<k<t t—tp
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Proof of Theorem 11 (cont.)

For a general f{-), taking top = 0 immediately establishes the claim.

If ) is convex, invoke Theorem 10 to obtain

2 x|
< 2

fx) — fx")
Taking to = t/2 and combining it with (11) give

. 2L
min |[VAx)[l2 < —=—=—=|Ix° = x||2
to<k<t t(t— to) t

In view of Lemma 9 (smooth and convex),
ming <k<t || VAXX)||2 = [|[VAX)||2, thus concluding the proof.

ECE 5290/7290 & ORIE 5290
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Escaping saddles

There are at least two kinds of points with vanishing gradients

global and local minimum saddle point
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Escaping saddle points

Saddle points look like "unstable” critical points; can we hope to at least
avoid saddle points?

GD cannnot always escape saddles

meg if x® happens to be a saddle , then GD gets trapped

can often be prevented by random initialization

(since VAx%) = 0)

Fortunately, under mild conditions, randomly initialized GD converges
to local (sometimes even global) minimum almost surely (Lee et al.)!
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Example

Consider a simple nonconvex quadratic minimization problem

1
min f(x) = EXTAX

m A =uju] —uu,, where |[ui]z = |Juz]]2 =1 and uf u; =0

This problem has (at least) a saddle point: x = 0 (why?)
m if xXO =0, then GD gets stuck at 0 (i.e. x' = 0)

m what if we initialize GD randomly? can we hope to avoid saddles?

ECE 5290/7290 & ORIE 5290
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Example (cont.)

Fact 12 If x ~ NV(0,1), then with prob. approaching 1, GD with

1 < 1 obeys
[[x[]2 = o0 ast— o

m Interestingly, GD (almost) never gets trapped in the saddle 0!
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Example (cont.)

Proof of Fact 12: Observe that
I—nA =1L+ (1 —nuu] +(1+n)uzu,
where || (=1 — ululT — uzu2 It can be easily verified that

(1=nA)" =1L+ (1= n)'uruy + (14 n)'uuy

— x'=(1-nAXx"1t=...=(1-7A)X°
=17 + (L= ) (u] x°) ur + (14 7)(uy X°) up

=y =0

Clearly, a; — 0 as t — oo, and |3;| — oo as long as Sy # 0

and hence ||xt|[2—oco happens with prob. 1

ECE 5290/7290 & ORIE 5290
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Is strong convexity necessary for linear convergence?

So far, linear convergence under strong convexity and smoothness.

Strong convexity requirement can often be relaxed
m local strong convexity

m Polyak-Lojasiewicz condition
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Example: logistic regression

Suppose we obtain m independent binary samples

1,  with prob. 71+exp(17a.-rxh)
;= _ i
i —1, with prob. 71+exp%a.—rxh)

where {a;}: known design vectors; x* € R™: unknown parameters
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Example: logistic regression

The maximum likelihood estimate (MLE) is given by (after a little
manipulation)

log (1
min f{x) = ; og (14 exp(—ya; x))

m eXP(—}/iaTX) X— 00 .
V2fix) =157 ! aa; 0 = fis
| | f( ) m Zl—l (1 +exp(—y;a;rx))2 i

—0 if x—o0

0-strongly convex

m Does it mean we no longer have linear convergence?
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Local strong convexity

Theorem (GD for locally strongly convex and smooth
functions)

Let f be locally u-strongly convex and L-smooth such that
ul = sz(x) =< LI, for allx € By

where By := {x: [|x — x*|| < ||x® — x*||o} and x* is the minimizer.
Then Theorem 2.1 continues to hold.
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Local strong convexity

{z:[lz — 22 < 27 — 27|}

m Suppose x' € By. Then repeating our previous analysis yields

K
X = x"|2 <

< Sl = x s

m This also means xt*1 € By, so the above bound continues to hold
for the next iteration ...
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Local strong convexity

Back to the logistic regression example, the local strong convexity
parameter is given by

l i exp(_yia?—x) aia,T> (6)

inf Ami
xS 0 [l2 (m — (1 + exp(—yia; x))?

which is often strictly bounded away from 0, thus enabling linear

convergence.

m For example, when x* = 0 and a; & N(0,1,), one often has (6) > ¢ for

some universal constant ¢y > 0 with high prob if m/n > 2 (Sur et al. '17).
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Example: over-parametrized linear regression

m m data samples {a; € R", y; € R}1<i<pm

m linear regression: find a linear model that best fits the data
m

1

: a T 2

min fx) £ = ax—y

min %) 2 53 (2 x - )
i=1

Over-parameterization: model dimension > sample size (i.e. n> m)

— a regime of particular importance in deep learning
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Example: over-parametrized linear regression

While this is a convex problem, it is not strongly convex, since

V2f(x) = Za,-a,-T is rank-deficient if n > m

i=1

But for most “non-degenerate” cases, one has f{x*) = 0 (why?) and the
PL condition is met, and hence GD converges linearly

ECE 5290/7290 & ORIE 5290
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Example: over-parametrized linear regression

Fact 6 Suppose that A = [a;, - ,a,,]" € R™*" has rank m, and
that n, =n = %. Then GD obeys
fixt) — f(x*) < M (x°) — fx*)), forall t
- )\max(A ) ’

m very mild assumption on {a;}
m no assumption on {y;}
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Example: over-parametrized linear regression

Fact 6 Suppose that A = [ay,--- ,a,]" € R™" has rank m, and
that n, =7 = %. Then GD obeys

.
) - i) < (1= Jme)

max(A)> (x°) — f(x*)), forall t

m (aside) while there are many global minima for this
over-parametrized problem, GD has implicit bias

GD converges to a global min closest to initialization x°!

ECE 5290/7290 & ORIE 5290
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Proof of Fact 6

Everything boils down to showing the PL condition
IV AX)|[5 > 2Amin(AAT)A(x) (9)

If this holds, then the claim follows immediately from Theorem 5 and the
fact {x*) = 0.

To prove (9), let y = [yi]li<i<m, and observe Vfix) = AT(Ax —y). Then

IVAX)|13 = (Ax —y) TAAT (Ax —y)
2 )\min(AAT)HAX - yH%
= 2\min(AAT)A(x),

which satisfies the PL condition (9) with 1 = Amin(AAT).
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Recap and fine-tuning

m What we have talked about today?
= How GD performs in convex and smooth problems?

= Without convexity, where it converges to? How fast?
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