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Differentiable unconstrained minimization

minx f (x)
subject to x ∈ Rn

f (objective or cost function) is differentiable



ECE 5290/7290 & ORIE 5290 3 / 41

Connecting abstract to concrete optimization

The notation minx f(x) can seem abstract. Let’s explicitly map it to the
machine learning training problem we’ve been discussing.

Model training problem
Parameters: a huge set of weights
and biases from all layers of our
neural network.
θ = {W1, b1,W2, b2, . . . }

Loss function: a measure of the
average error over all data
L(θ) = 1

m
∑m

i=1(hθ(datai)− labeli)2

Generic optimization problem
Variable: a (very) long vector
containing all the parameters
flattened together.
x ∈ Rn

Objective function: a
high-dimensional differentiable
function to minimize f(x)

Training a model just means finding the variable x∗ that minimizes f(x).
The number of parameters n can be in the millions or billions!
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Connecting abstract to concrete optimization

We have m data points. For each data point (x(i), y(i)), the linear model
predicts ŷ(i) = (x(i))⊤θ. Our goal is to minimize the total squared error:

L(θ) =
m∑

i=1

(
(x(i))⊤θ − y(i)

)2

Data A (m × n features)

A =


— (x(1))⊤ —
— (x(2))⊤ —

...
— (x(m))⊤ —



Params x

x =


θ1
θ2
...
θn



Labels b (m samples)

b =


y(1)
y(2)

...
y(m)



Ax− b =

(x(1))⊤θ
...

(x(m))⊤θ

−
y(1)

...
y(m)

 =

 error for sample 1
...

error for sample m


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Gradient descent (GD)

A building block of this course: gradient descent

xt+1 = xt − ηt∇f(xt)

traced to Augustin Louis
Cauchy ’1847 ...

x0

x1

x2

x3

x4

x5
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Strongly convex and smooth problems

Now generalize quadratic minimization to a broader class of problems

min
x

f(x)

Key assumption: f(·) is strongly convex and smooth.

a twice-differentiable function f is said to be µ-strongly convex and
L-smooth if the Hessian ∇2f(x) satisfies

0 ⪯ µI ⪯ ∇2f(x) ⪯ LI, for all x
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Strong convexity & smoothness in linear regression

To check the assumption, we first need to compute the Hessian matrix.
The gradient is ∇f(x) = A⊤(Ax− b). Taking the derivative again gives:

∇2f(x) = A⊤A

The condition µI ⪯ ∇2f(x) ⪯ LI means the eigenvalues of the Hessian
are bounded between µ and L. For linear regression:

Strong convexity: f is µ-strongly convex, where µ = λmin(A⊤A),
the smallest eigenvalue of A⊤A. We get strong convexity (µ > 0) if
the data matrix A has linearly independent columns.

Smoothness: f is L-smooth, where L = λmax(A⊤A), the largest
eigenvalue of A⊤A. This is satisfied as long as our data is finite.
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More on strong convexity

f(·) is said to be µ-strongly convex if

(i) f(y) ≥ f(x) +∇f(x)⊤(y− x)︸ ︷︷ ︸
first-order Taylor expansion

+µ
2 ||x− y||22, for all x, y

(ii) equivalently, ⟨∇f(x)−∇f(y), x− y⟩ ≥ µ||x− y||22, for all x, y
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More on smoothness

A convex function f(·) is said to be L-smooth if
(i) f(y) ≤ f(x) +∇f(x)⊤(y− x)︸ ︷︷ ︸

first-order Taylor expansion

+L
2 ||x− y||22, for all x, y

(ii) ||∇f(x)−∇f(y)||2 ≤ L||x− y||2, for all x, y (L-Lipschitz gradient)
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Convergence rate for strongly convex and smooth problems

Theorem 1 (GD for strongly convex and smooth functions)

Let f be µ-strongly convex and L-smooth. If ηt ≡ η = 2
µ+L , then

||xt − x∗||2 ≤
(
κ− 1
κ+ 1

)t
||x0 − x∗||2,

where κ := L/µ is condition number; x∗ is the minimizer.

generalization of quadratic minimization problems
• stepsize: η = 2

µ+L (vs. η = 2
λ1(Q)+λn(Q)

)

• contraction rate: κ−1
κ+1 (vs. λ1(Q)−λn(Q)

λ1(Q)+λn(Q)
)
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Convergence rate for strongly convex and smooth problems

Theorem 1 (GD for strongly convex and smooth functions)

Let f be µ-strongly convex and L-smooth. If ηt ≡ η = 2
µ+L , then

||xt − x∗||2 ≤
(
κ− 1
κ+ 1

)t
||x0 − x∗||2,

where κ := L/µ is condition number; x∗ is the minimizer.

dimension-free: iteration complexity is O
(

log 1
ϵ

log κ+1
κ−1

)
, which is

independent of the problem size n if κ does not depend on n
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Proof of Theorem 1

To mimic the analysis of quadratic case (cf. ∇f(xt) = Q(xt − x∗))

xt+1 − x∗ = xt − x∗ − ηt∇f(xt) = (I− ηtQ)(xt − x∗)
=⇒ ||xt+1 − x∗||2 ≤ ||I− ηtQ|| · ||xt − x∗||2

for strongly convex cases, we have

||xt+1 − x∗||2 = ||xt − x∗ − η∇f(xt)||2.

We can “generate” (xt − x∗) from the fundamental theorem of calculus

∇f(xt) = ∇f(xt)−∇f(x∗)︸ ︷︷ ︸
=0

=

(∫ 1

0
∇2f(xτ )dτ

)
(xt − x∗),

where xτ := xt + τ(x∗ − xt) lies on a line segment between xt and x∗.
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Proof of Theorem 1 (cond’t)

Building upon this connection, we have

||xt+1 − x∗||2 = ||xt − x∗ − η∇f(xt)||2

=

∣∣∣∣∣
∣∣∣∣∣
(

I− η

∫ 1

0
∇2f(xτ )dτ

)
(xt − x∗)

∣∣∣∣∣
∣∣∣∣∣
2

≤ sup
0≤τ≤1

||I− η∇2f(xτ )|| · ||xt − x∗||2

≤ L− µ

L + µ
||xt − x∗||2

where we first choose the constant stepsize as η = 2
µ+L , and then use the

fact that f be µ-strongly convex and L-smooth.

Repeat this argument for all iterations to conclude the proof.

Hint: The spectral norm of I − η∇2f(xτ ) is its largest eigenvalue.
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Backtracking line search

Practically, one often performs line searches rather than adopting
constant stepsizes. Most line searches in practice are, however, inexact.

A simple and effective scheme: backtracking line search

xt

x+

xt+1

Tangent

−η∇f(xt)
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Backtracking line search

Armijo condition: for some 0 < α < 1

f(xt − η∇f(xt)) < f(xt)− αη||∇f(xt)||22 (5)

f(xt)− αη||∇f(xt)||22 lies above f(xt − η∇f(xt)) for small η
ensures sufficient decrease of objective values
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Backtracking line search

Algorithm 2 - Backtracking line search for GD

1: Initialize η = 1, 0 < α ≤ 1/2, 0 < β < 1
2: while f(xt − η∇f(xt)) > f(xt)− αη||∇f(xt)||22 do
3: η ← βη
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Backtracking line search

Practically, backtracking line search often (but not always) provides good
estimates on the local Lipschitz constants of gradients.
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Convergence for backtracking line search

Theorem 2 (Boyd, Vandenberghe ’04)

Let f be µ-strongly convex and L-smooth. With backtracking line
search, the objective function satisfies

f(xt)− f(x∗) ≤
(

1−min{2µα, 2βαµ
L }

)t
(f(x0)− f(x∗))

where x∗ is the minimizer.
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Dropping strong convexity

What happens if we completely drop (local) strong convexity?

min
x

f(x)

Key assumption: f(x) is convex and smooth
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Dropping strong convexity

Without strong convexity, it may often be better to focus on objective
improvement (rather than improvement on estimation error).

x

f(x) = 1/x

Example: consider f(x) = 1/x (x > 0). GD iterates {xt} might never
converge to x∗ =∞. In comparison, f(xt) might approach f(x∗) = 0.
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Objective improvement and stepsize

Question:
can we ensure reduction of the objective value
(i.e. f(xt+1) < f(xt)) without strong convexity?
what stepsizes guarantee sufficient decrease?

Key idea: majorization-minimization
find a simple majorizing function of f(x) and optimize it instead
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Objective improvement and stepsize

From the smoothness assumption,

f(xt+1)− f(xt) ≤ ∇f(xt)⊤(xt+1 − xt) +
L
2 ||x

t+1 − xt||22

= −ηt||∇f(xt)||22 +
η2

t L
2 ||∇f(xt)||22︸ ︷︷ ︸

majorizing function of objective reduction due to smoothness

(pick ηt = 1/L to minimize the majorizing function)

= − 1
2L ||∇f(xt)||22
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Objective improvement

Fact 7 Suppose f is L-smooth. Then GD with ηt = 1/L obeys

f(xt+1) ≤ f(xt)− 1
2L ||∇f(xt)||22

for ηt sufficiently small, GD results in improvement in the objective

does NOT rely on convexity!
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Make connections to ETA

How many miles I can drive per hour given the total distance?
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A byproduct under additional curvature conditions

From the per-iteration objective improvement

f(xt+1)− f(x∗)
(i)
≤ f(xt)− f(x∗)− 1

2L ||∇f(xt)||22
(ii)
≤ f(xt)− f(x∗)− µ

L (f(x
t)− f(x∗))

=
(

1− µ

L
)
(f(xt)− f(x∗))

where (i) follows from Fact 7, and (ii) comes from the so-called
Polyak-Lojasiewicz (PL) condition (implied by strong convexity)

||∇f(x)||22 ≥ 2µ(f(x)− f( x∗︸︷︷︸
minimizer

)), for all x.

Apply it recursively to obtain the linear convergence of f(xt)− f(x∗).
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Improvement in estimation accuracy

GD is not only improving the objective value, but is also dragging the
iterates towards minimizer(s), as long as ηt is not too large.

xt

xt+1

x∗
||xt − x∗||2 is monotonically
nonincreasing in t

Treating f as 0-strongly convex, we can see from our previous analysis for
strongly convex problems that

||xt+1 − x∗||2 ≤ ||xt − x∗||2
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Improvement in estimation accuracy

One can further show that ||xt − x∗||2 is strictly decreasing unless xt is
already the minimizer.

Fact 8 Let f be convex and L-smooth. If ηt ≡ η = 1/L, then

||xt+1 − x∗||22 ≤ ||xt − x∗||22 −
1
L2 ||∇f(xt)||22

where x∗ is any minimizer of f(·).
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Proof of Fact 8*

It follows that

||xt+1 − x∗||22 = ||xt − x∗ − η(∇f(xt)−∇f(x∗)︸ ︷︷ ︸
=0

)||22

= ||xt − x∗||22 − 2η⟨xt − x∗,∇f(xt)−∇f(x∗)⟩
+ η2||∇f(xt)−∇f(x∗)||22

≤ ||xt − x∗||22 −
2η
L ||∇f(xt)−∇f(x∗)||22︸ ︷︷ ︸

≥ (smooth+cvx)

+η2||∇f(xt)−∇f(x∗)||22

= ||xt − x∗||22 −
1
L2 ||∇f(xt)−∇f(x∗)︸ ︷︷ ︸

=0

||22 (since η = 1/L)
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Monotonicity of gradient sizes

When ηt = 1/L, gradient sizes are also monotonically non-increasing.

Lemma 9 Let f be convex and smooth. If ηt ≡ η = 1/L, then GD
obeys

||∇f(xt+1)||2 ≤ ||∇f(xt)||2

As a result, GD enjoys at least 3 types of monotonicity as t grows:
objective value f(xt)↘
estimation error ||xt − x∗||2 ↘
gradient size ||∇f(xt)||2 ↘
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Proof of Lemma 9

Recall that the fundamental theorem of calculus gives

∇f(xt+1) = ∇f(xt) +

∫ 1

0
∇2f(xτ )(xt+1 − xt)dτ

=

(
I− η

∫ 1

0
∇2f(xτ )dτ

)
︸ ︷︷ ︸

=:B

∇f(xt),

where xτ := xt + τ(xt+1 − xt). When η ≤ 1/L, it is easily seen that

0 ⪯ B ⪯ I =⇒ 0 ⪯ B2 ⪯ I

We can thus derive

||∇f(xt+1)||22 − ||∇f(xt)||22 = ∇f(xt)⊤(B2 − I)∇f(xt) ≤ 0
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Convergence rate for convex and smooth problems

However, without strong convexity, convergence is typically much slower
than linear (or geometric) convergence.

Theorem 10 (GD for convex and smooth problems)
Let f be convex and L-smooth. If ηt ≡ η = 1/L, then GD obeys

f(xt)− f(x∗) ≤ 2L||x0 − x∗||22
t

where x∗ is any minimizer of f(·).

attains ϵ-accuracy within O(1/ϵ) iterations (vs. O(log 1
ϵ ) iterations

for linear convergence)
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Proof of Theorem 10 (cont.)

From Fact 7,
f(xt+1)− f(xt) ≤ − 1

2L ||∇f(xt)||22

To infer f(xt) recursively, it is often easier to replace ||∇f(xt)||2 with
simpler functions of f(xt). Use convexity and Cauchy-Schwarz to get

f(x∗)− f(xt) ≥ ∇f(xt)⊤(x∗ − xt) ≥ −||∇f(xt)||2||xt − x∗||2

=⇒ ||∇f(xt)||2 ≥
f(xt)− f(x∗)
||xt − x∗||2

Fact 8
≥ f(xt)− f(x∗)

||x0 − x∗||2
Setting ∆t := f(xt)− f(x∗) and combining the above bounds yield

∆t+1 −∆t ≤ −
1

2L||x0 − x∗||22
∆2

t =: − 1
w0

∆2
t
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Proof of Theorem 10 (cont.)

∆t+1 ≤ ∆t −
1

w0
∆2

t

Dividing both sides by ∆t∆t+1 and rearranging terms give

1
∆t+1

≥ 1
∆t

+
1

w0

∆t
∆t+1

=⇒ 1
∆t+1

≥ 1
∆t

+
1

w0
(since ∆t ≥ ∆t+1 (Fact 7))

=⇒ 1
∆t
≥ 1

∆0
+

t
w0
≥ t

w0

=⇒ ∆t ≤
w0
t =

2L||x0 − x∗||22
t

as claimed.
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In-Class Lab: The nonconvex case - a bumpy road
Goal: See how the starting point leads to different local minima.

The Setup
Our function: f(x) = 1

4 x4 − 2x2. This function has two minima.
Its gradient: f′(x) = x3 − 4x.
The GD update rule: xt+1 = xt − η · f′(xt).
We will use a learning rate of η = 0.1.

−3 −2 2 3
x

f(x)

Figure: You will plot your GD steps on a graph like this.
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Part 1: Starting at x0 = 3.0

Instructions: The gradient values are provided. Calculate the ‘Update‘
and the ‘Next Point‘ for each step.

t xt Gradient f′(xt) (Given) Update η · f′(xt) Next Point xt+1

0 3.0 15.0 1.5 1.5
1 1.5 -2.625
2

Questions
1. Plot your points (x0, x1, x2, . . . ) on the graph.
2. Which minimum does the path seem to be approaching (x = 2 or

x = −2)?
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Part 2: Starting at x0 = −3.0

Instructions: Now, start from the left side and repeat the process.

t xt Gradient f′(xt) (Given) Update η · f′(xt) Next Point xt+1

0 -3.0 -15.0 -1.5 -1.5
1 -1.5 2.625
2

The Final Question
Based on your two experiments, what is the most important factor in
determining which minimum GD finds in a nonconvex problem?
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Solutions: The Importance of Initialization

Part 1: Starting at x0 = 3.0
t xt f′(xt) η · f′(xt) xt+1

0 3.0 15.0 1.5 1.5
1 1.5 -2.625 -0.263 1.763
2 1.763 -1.565 -0.157 1.920

→ Converges to x = 2

Part 2: Starting at x0 = −3.0
t xt f′(xt) η · f′(xt) xt+1

0 -3.0 -15.0 -1.5 -1.5
1 -1.5 2.625 0.263 -1.763
2 -1.763 1.565 0.157 -1.920

→ Converges to x = −2

Key Takeaway
For nonconvex problems, the algorithm is only guaranteed to find a local
minimum, and the one it finds is determined by the starting point.



Recap and fine-tuning

What we have talked about today?
⇒ How GD performs in strongly convex and smooth problems?
⇒ Without strong convexity, the rate slows to sublinear, O(1/t).

Welcome anonymous survey!
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