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Differentiable unconstrained minimization

miny f(x)
subject to x € R”

m f (objective or cost function) is differentiable
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Connecting abstract to concrete optimization

The notation min, f{x) can seem abstract. Let's explicitly map it to the
machine learning training problem we've been discussing.

Model training problem Generic optimization problem

m Parameters: a huge set of weights m Variable: a (very) long vector
and biases from all layers of our containing all the parameters
neural network. flattened together.
6 = {Wi, b1, W, by, ... } x € R"

m Loss function: a measure of the m Objective function: a
average error over all data high-dimensional differentiable
L(0) = L > (he(data;) — label;)? function to minimize f(x)

Training a model just means finding the variable x* that minimizes f{(x).
The number of parameters n can be in the millions or billions!

S
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Connecting abstract to concrete optimization

We have m data points. For each data point (x(i),y(’)), the linear model
predicts ) = (x())T@. Our goal is to minimize the total squared error:

1) = > ()70 -y’

i=1

Data A (m x n features) Params x Labels b (m samples)
ol , 0
e |’ o |
_ (X(n'1))T _ On y(.m)
(xMTe b error for sample 1
Ax —b = : - = :

(x(mTo ym) error for sample m
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Gradient descent (GD)

A building block of this course: gradient descent

x = xt — , VAx")

m traced to Augustin Louis
Cauchy '1847 ...
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Strongly convex and smooth problems

Now generalize quadratic minimization to a broader class of problems
min f(x)
X
Key assumption: f{-) is strongly convex and smooth.

m a twice-differentiable function fis said to be p-strongly convex and
L-smooth if the Hessian V2f(x) satisfies

0=<pul= sz(x) =< LI, forall x
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Strong convexity & smoothness in linear regression

To check the assumption, we first need to compute the Hessian matrix.
The gradient is VA{x) = AT(Ax — b). Taking the derivative again gives:

V2 fx) = ATA

The condition ul < V2f(x) < LI means the eigenvalues of the Hessian
are bounded between 1 and L. For linear regression:
m Strong convexity: fis p-strongly convex, where i1 = Apmin(ATA),
the smallest eigenvalue of AT A. We get strong convexity (u > 0) if
the data matrix A has linearly independent columns.

m Smoothness: fis [-smooth, where [ = /\max(ATA), the largest
eigenvalue of ATA. This is satisfied as long as our data is finite.

©)
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More on strong convexity

f(-) is said to be p-strongly convex if

(i) fy) = fix) + VAX) " (y = x) +5lx —y[}3, forall x,y

first-order Taylor expansion

(i) equivalently, (VA(x) — VAy).x—y) = ullx —y|&, forall x,y
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More on smoothness

A convex function f{-) is said to be L-smooth if
(i) fly) < fx)+ VAx) " (y —x) +5|x —y[[3, forall x,y

first-order Taylor expansion

(i) [|[VAx)=VAy)|]> < L|[x—yl|]2, forall x,y (L-Lipschitz gradient)

1

\ ,I
o\ 1)+ (VF(ehy =)+ flly=alf
/
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Convergence rate for strongly convex and smooth problems

Theorem 1 (GD for strongly convex and smooth functions)

Let fbe p-strongly convex and L-smooth. If n; =n = u+L’ then
—1\¢
t_ ¥ < K 0 _ *
I =x'l < (557 160 =l

where k := L/ is condition number; x* is the minimizer.

m generalization of quadratic minimization problems

stepsize: 1= 47 (vs. 1 = xgrtn@)

contraction rate: == (vs. w)

©)
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Convergence rate for strongly convex and smooth problems

Theorem 1 (GD for strongly convex and smooth functions)

Let fbe p-strongly convex and L-smooth. If 5, = n = -2+, then

ptL?
k—1\"
I =1l < (257 ) I =Xl

where k := L/ is condition number; x* is the minimizer.

1
log =

XS

log =55

m dimension-free: iteration complexity is O , which is

independent of the problem size n if x does not depend on n

©)
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Proof of Theorem 1

To mimic the analysis of quadratic case (cf. VAx') = Q(x" — x*))
X x* = xt— x* — VA = (I — :Q)(x* — x*)
=[x x| < 1= QI [|x* = x"]2
for strongly convex cases, we have
[ = x[l2 = [|x* = x* = nVAx)[2.
We can “generate” (x! — x*) from the fundamental theorem of calculus
1
VAx') = VAx') — VAx*) = </ sz(xT)dT> (x! —x*),
——

0
=0

where x, := x* + 7(x* — x*) lies on a line segment between x* and x*.

)
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Proof of Theorem 1 (cond't)

Building upon this connection, we have

[ = x"]2 = [Ix* —x* = VAx)||2

H (I - 77/0 sz(xT)dT> (xf—x*)

2

< sup [[1=nV2Ax)|| - [[xE = x7][o
0<r<1
L_

< =Bt — x|
L+ p

where we first choose the constant stepsize as 7 = and then use the

2
L
fact that f be u-strongly convex and L-smooth.

Repeat this argument for all iterations to conclude the proof.

t: The spectral norm of | — nV?f(x,) is its largest eigenvalue.
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Backtracking line search

Practically, one often performs line searches rather than adopting
constant stepsizes. Most line searches in practice are, however, inexact.

A simple and effective scheme: backtracking line search

Tangent
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Backtracking line search

f@' —nVf(z')
.""‘;: ---------- I
s\,_"v“':-- ........ ‘ f(mt)f amlvf(mt)”
1) =l @n
P — n

acceptable
Armijo condition: for some 0 < a <1
fixt — nVAx)) < fAx) — anl[VAX)| 13 (5)

m f{x!) — an||VAx?)||3 lies above fxt — nVAxt)) for small n
- m ensures sufficient decrease of objective values
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Backtracking line search

4l f(m‘)fma\lvf(w‘)l\%
(") —nnvﬂm‘m )

G“———————V———————J n
acceptable

Algorithm 2 - Backtracking line search for GD

1: Initializen=1,0< a<1/2,0< (<1
2: while {x! — nVAx")) > (x!) — an||VAx)||5 do
3 n<Pn
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Backtracking line search

upper bound f(&) — 1]V S (') I + 479/ (@) 3
| J(@' =0V f(a")

RS

" flat) — anl|VH(=)]3

Practically, backtracking line search often (but not always) provides good
estimates on the local Lipschitz constants of gradients.
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Convergence for backtracking line search

Theorem 2 (Boyd, Vandenberghe '04)

Let f be u-strongly convex and L-smooth. With backtracking line
search, the objective function satisfies

f(xf)—f(x*)s(l—min{zua "““}) (%) — "))

where x* is the minimizer.

ECE 5290/7290 & ORIE 5290 19/41



Table of Contents

Convex and smooth problems

ECE 5290/7290 & ORIE 5290 20/41



Dropping strong convexity

What happens if we completely drop (local) strong convexity?

mxin fx)

m Key assumption: f(x) is convex and smooth
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Dropping strong convexity

Without strong convexity, it may often be better to focus on objective
improvement (rather than improvement on estimation error).

Example: consider f{x) = 1/x (x > 0). GD iterates {x'} might never
converge to x* = co. In comparison, f(x") might approach f{x*) = 0.

)
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Objective improvement and stepsize

Question:

m can we ensure reduction of the objective value
(i.e. Ax*1) < f(x?)) without strong convexity?

m what stepsizes guarantee sufficient decrease?

Key idea: majorization-minimization

m find a simple majorizing function of f{x) and optimize it instead
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Objective improvement and stepsize

From the smoothness assumption,

x) — fx) < V)T - x) + 5

t1_ t])2
5 x'[[3

I
2
= e[ VA + IIVf(Xt)Hz

majorizing function of objective reduction due to smoothness

(pick 7 = 1/L to minimize the majorizing function)

1
= IV

@
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Objective improvement

Fact 7 Suppose fis L-smooth. Then GD with n; = 1/L obeys

xt) < () — 5V A I3

m for n; sufficiently small, GD results in improvement in the objective

m does NOT rely on convexity!
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Make connections to ETA

Trip 1: Estimated to arrive in [8:17, 8:22] with a
confidence level of 90%
Trip 2: Estimated to arrive in [8:40, 8:54] with a B

S g 4 .‘*'s\ 4 &
confidence level of 90% b/ = v - ¥
i N /
. DU 4 >
£ Z 285 é !
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A byproduct under additional curvature conditions

From the per-iteration objective improvement
A1) - Aix') € Ax) — ') — o [V
< ) ) - L) - )
= (1-7) (Ax) = fx"))

where (i) follows from Fact 7, and (ii) comes from the so-called
Polyak-Lojasiewicz (PL) condition (implied by strong convexity)

VAR = 26(fx) = R x° ), forall x.

minimizer

Apply it recursively to obtain the linear convergence of f{x!) — f{x*).

@
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Improvement in estimation accuracy

GD is not only improving the objective value, but is also dragging the
iterates towards minimizer(s), as long as 7, is not too large.

Vo ||x* — x*||2 is monotonically
, | nonincreasing in t

Treating f as 0-strongly convex, we can see from our previous analysis for
strongly convex problems that

[ —x*][o < [|x" = x*[]2
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Improvement in estimation accuracy

One can further show that ||x* — x*||2 is strictly decreasing unless x* is
already the minimizer.

Fact 8 Let f be convex and L-smooth. If n; =n = 1/L, then
t+1 * |2 t *|2 1 t\[|2
[ = x"]f; < [lx" = x7[lz = VA

where x* is any minimizer of f{-).

)
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Proof of Fact 8*

It follows that

x5 — x*[[3 = [|x* — x* — n(VAx') — VAx))||3
S~——
=0
= ||x* — x*|[3 — 2n(x" — x*, VAx') — VAx"))
+ 2l VAX') — VX

<= x*[3 = TNIVAX) = VAX)E +07 || VAX) = VAX)[3

> (smooth+-cvx)

=[x = x|l = ZIIVAX) = VAX)[[5 (since n = 1/1)
N——

=0
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Monotonicity of gradient sizes

When n, = 1/L, gradient sizes are also monotonically non-increasing.

Lemma 9 Let f be convex and smooth. If n, =n = 1/L, then GD
obeys
IVAX |2 < [[VRX)| 2

As a result, GD enjoys at least 3 types of monotonicity as t grows:
m objective value f(x*) N\,
m estimation error ||x* — x*|[2 N\
m gradient size [|[VAX")|]2 N\
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Proof of Lemma 9

Recall that the fundamental theorem of calculus gives

VAX) = VA + /0 V2, ) (xH! — xt)dr

= (I — 77/0 sz(xT)d7'> VAxY),

=B

where x, 1= x4+ 7(x*1 — x?). When 1 < 1/L, it is easily seen that
0<B=<l= 0=<B*><I
We can thus derive

IVAXE — [[VAX)I5 = VAx) T (B — )VAx) <0
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Convergence rate for convex and smooth problems

However, without strong convexity, convergence is typically much slower
than linear (or geometric) convergence.

Theorem 10 (GD for convex and smooth problems)
Let f be convex and L-smooth. If n, =71 =1/L, then GD obeys

L 2L — x|
- t

fx’) — Ax)

where x* is any minimizer of f{-).

m attains e-accuracy within O(1/e) iterations (vs. O(log 1) iterations
for linear convergence)
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Proof of Theorem 10 (cont.)

From Fact 7, .
fx*) — fx') < —ﬂHVf(Xt)IIE

To infer {x") recursively, it is often easier to replace ||[VAx!)||2 with
simpler functions of f{x*). Use convexity and Cauchy-Schwarz to get

ﬂx*) - f(Xt) > Vf(xt)T(x* — xt) > —||Vf(xt)||2||xt _ X*||2
fixt) — f(x*) ik fxt) — fx*)

[t =xrfl 7 |xO = x*]]2

= [[VAX)Il2 2
Setting A; := f{x") — f{x*) and combining the above bounds yield

1 1
A — A< ——— = A2~ A?
T A BT e
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Proof of Theorem 10 (cont.)

1
Dy <A — —A2
Wo
Dividing both sides by A:A;; and rearranging terms give

1 1 1 A
> 4=
A1:-&-1 Ay Wo A1:+1

IV
|
+
|

Ao oD T w (since Ay > Ayyq (Fact 7))

1 1 I t > t
At - AO wy ~ W
wo  2L[[x% —x*[|3

t t
as claimed.

@
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In-Class Lab: The nonconvex case - a bumpy road
Goal: See how the starting point leads to different local minima.

The Setup

m Our function: f(x) = 1x* — 2x%. This function has two minima.

m Its gradient: 7(x) = x> — 4x.
m The GD update rule: x;.1 = x; — 1 - f(x).

m We will use a learning rate of n = 0.1.

-
VANV,

Figure: You will plot your GD steps on a graph like this.
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Part 1: Starting at xg = 3.0

Instructions: The gradient values are provided. Calculate the ‘Update’
and the ‘Next Point’ for each step.

t x Gradient f(x;) (Given) Update n-f(x;) Next Point x.i1
0 3.0 15.0 15 1.5
1 15 -2.625
2
Questions

1. Plot your points (xg, x1, X2, . .. ) on the graph.

2. Which minimum does the path seem to be approaching (x =2 or
x==2)7
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Part 2: Starting at xg = —3.0

Instructions: Now, start from the left side and repeat the process.

t x. Gradient f(x;) (Given) Update n-f(x;) Next Point x:;1

0 -3.0 -15.0 -1.5 -1.5
1 -15 2.625
2

The Final Question

Based on your two experiments, what is the most important factor in
determining which minimum GD finds in a nonconvex problem?
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Solutions: The Importance of Initialization

Part 1: Starting at xo = 3.0 Part 2: Starting at xo = —3.0
t Xt F(xe) n-fF(xt) Xern t Xt F(xe) n-F(xt) X1
0 30 15.0 1.5 15 0 -30 -15.0 -1.5 -1.5
1 1.5 -2625 -0.263 1.763 1 -15 2625 0.263 -1.763
2 1.763 -1565 -0.157 1.920 2 -1.763 1.565 0.157 -1.920
— Converges to x = 2 — Converges to x = —2

Key Takeaway

For nonconvex problems, the algorithm is only guaranteed to find a local
minimum, and the one it finds is determined by the starting point.

©)
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Recap and fine-tuning

m What we have talked about today?
= How GD performs in strongly convex and smooth problems?
= Without strong convexity, the rate slows to sublinear, O(1/t).
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