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Different perspectives of (pre)training Al models

[1. Given training data {x}, develop a Model hg(x)]

Y

[2. Define a Loss Function L(8) based on the format {x}]

Y

[3. Design an Optimization Algorithm to minimize the Ioss]

This three-step framework — Model, Loss, and Optimization - is the
fundamental blueprint for almost all of supervised machine learning.
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Different perspectives of (pre)training Al models

[1. Given training data {x}, develop a Model hg(X)]

\

[2. Define a Loss Function L(0) based on the format {x}]

We will further extend to different data modality and different
state-of-the-art (SOTA) models in Theme 3 of the class.
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Generic (model-agnostic) optimization

[3. Design an Optimization Algorithm to minimize the loss L(O)]

In the next few lectures, we will first review some generic (model-agnostic
and data-agnostic) optimization techniques - which are the fundamental
for training almost all types of machine learning and Al models.

Since we first consider data-agnostic optimization, the algorithms are all "batch”
algorithms, which use the entire dataset to compute each optimization update.
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Differentiable unconstrained minimization

For now on, let's use x to replace 0 as the optimization variable

miny f(x)
subject to x € R”

m f (objective or cost function) is differentiable
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Why not solve Vf(x) = 0 directly?

For simple functions, we can find the analytical solution by solving

ix)=(x—3)2 = VAx)=2(x-3)=0 = x=3.
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Why not solve Vf(x) = 0 directly?

For simple functions, we can find the analytical solution by solving

ix)=(x—3)2 = VAx)=2(x-3)=0 = x=3.

For Al/ML, this direct approach is usually impossible for several reasons:

No closed-form solution Prohibitive computational cost
For a deep neural network, Even when a closed-form solution
Vf(x) = 0 is a massive system of exists, it requires computationally
highly non-linear, coupled equations. infeasible operations, like inverting a
No algebraic formula to solve for x. massive matrix (O(n?) cost).
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Why not solve Vf(x) = 0 directly?

For simple functions, we can find the analytical solution by solving

ix)=(x—3)2 = VAx)=2(x-3)=0 = x=3.

For Al/ML, this direct approach is usually impossible for several reasons:

No closed-form solution Prohibitive computational cost
For a deep neural network, Even when a closed-form solution
Vf(x) = 0 is a massive system of exists, it requires computationally
highly non-linear, coupled equations. infeasible operations, like inverting a
No algebraic formula to solve for x. massive matrix (O(n?) cost).

Local minima & saddle points

Solving Vf(x) = 0 finds all stationary points, including maxima and
saddle points. lterative algorithms move "downhill” to find a minimum.

ECE 5290/7290 & ORIE 5290 6/

31



Iterative descent algorithms

Start with a point x°, and construct a sequence {x'} s.t.

fix) < ixt), t=0,1,...
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Iterative descent algorithms

Start with a point x°, and construct a sequence {x'} s.t.
fix) < ixt), t=0,1,...
m d is said to be a descent direction of f at x if

f(x;d) = lim w =VAx)'d<0

directional derivative
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Iterative descent algorithms

Start with a point x°, and construct a sequence {x'} s.t.
fix) < ixt), t=0,1,...
m d is said to be a descent direction of f at x if

f(x;d) = lim w =VAx)'d<0

directional derivative

In each iteration, search minimum in a descent direction
Xt+1 — xt _|_ T]tdt

where d': descent direction at x*; 7; > 0: stepsize
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Gradient descent (GD)

One of the most important examples of (2): gradient descent

Xt = xt A 3)

m traced to Augustin Louis
Cauchy '1847 ...
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Gradient descent (GD) - steepest descent

One of the most important examples of (2): gradient descent
x™ = xt — , VAxY) (3)
m descent direction: d* = —Vf(x?)

m a.k.a. steepest descent, since from (1) and Cauchy-Schwarz (CS),

, . VAx)
Zix d) = T —
T g o< o) =2 in VAN IVAX)|l2

direction with the greatest rate of objective value improvement
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Gradient descent (GD) - steepest descent

One of the most important examples of (2): gradient descent
x™ = xt — , VAxY) (3)
m descent direction: d* = —Vf(x?')

m a.k.a. steepest descent, since from (1) and Cauchy-Schwarz (CS),

, . VAx)
Zix d) = T —
T g o< o) =2 in VAN IVAX)|l2

direction with the greatest rate of objective value improvement

The CS inequality gives us a lower bound u'v > —||u|[2||v||2, which is
achieved when v = —¢ - u for some scalar ¢ > 0.
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Gradient descent (GD) - steepest descent
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Gradient descent is great. But when it will terminate?
In the real world, we have a limited budget. How many iterations are
needed to reach a good-enough solution?

Convergence analysis gives us the answer. It tells us how an
algorithm will perform at scale.
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Convergence analysis as means to obtain ETA

\ Trip 1: Estimated to arrive in [8:17, 8:22] witha ‘
.- (oyp)y confidence level of 90% N

H Trip 2: Estimated to arrive in [8:40, 8:54] witha [* 77 & o0 S o 7
g confidence level of 90% L A ion
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ol e e s VA ey ¥ o
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Convergence analysis as means to obtain ETA

ESTIMATED TIME:
HOURS 30 MINUTES

Trip 1: Estimated to arrive in [8:17, 8:22] witha
confidence level of 90%

Trip 2: Estimated to arrive in [8:40, 8:54] witha | 7

oy confidence level of 90% i
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Convergence analysis as means to obtain ETA

Trip | M- Trip 2 -
.-)‘V iy 7y %,

i

‘e J : ESTIMATED TIME:
i . y 2 4 h HOURS 30 MINUTES

Trip 1: Estimated to arrive in [8:17, 8:22] witha

confidence level of 90% :
Trip 2: Estimated to arrive in [8:40, 8:54] witha |*7© & .
™o confidence level of 90% /8

B s VA ;‘«:{

m How many miles | can drive per hour given the total distance?

m How much progress | make per hour given the remaining distance?
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Quadratic minimization problems
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Quadratic minimization

To get a sense of the convergence rate of GD, let's begin with quadratic
objective functions (e.g., in linear regression)

mxin fx) := %(x —x)TQ(x — x*)

for some n x n matrix Q > 0, where Vf{x) = Q(x — x*)
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Quadratic minimization

To get a sense of the convergence rate of GD, let's begin with quadratic
objective functions (e.g., in linear regression)

mxin fx) := %(x —x)TQ(x — x*)

for some n x n matrix Q > 0, where Vf{x) = Q(x — x*)

Accordingly, the GD update rule becomes

xT = xt — 7, VA" = (1 — n.Q)(x" — x*) + x*!

What is unique about quadratic minimization?
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Quadratic minimization

m Local approximation: Any general smooth function behaves like a
quadratic very close to a minimizer (according to Taylor's theorem).
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Quadratic minimization

m Local approximation: Any general smooth function behaves like a
quadratic very close to a minimizer (according to Taylor's theorem).

m Tractable analysis: Allow to derive exact, closed-form convergence
rates. The insights we gain apply to more complex problems.

t—1

xt—x* = (H(I —nkQ)> (x° —x*) |

k=0
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Convergence for constant stepsizes

Proof: According to the GD update rule,
X x* = xt— x* — VA = (I — :Q)(x* — x*)
= [xT = x| < |I1=2Ql - [Ix* = x"[[2

To get the fastest convergence, we must choose the stepsize 7 that
minimizes the contraction factor ||l — nQ||».
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Convergence for constant stepsizes

Proof: According to the GD update rule,
X x* = xt— x* — VA = (I — :Q)(x* — x*)
= [xT = x| < |I1=2Ql - [Ix* = x"[[2

To get the fastest convergence, we must choose the stepsize 1 that
minimizes the contraction factor ||l — nQ||».
11 =nQ[] = max{[1 —nA:(Q)], |1 — nAa(Q)I}

remark: optimal choice is nt:m

220,(Q) M(Q) — M(Q)
M(Q)+2(Q)  M(Q)+ M (Q)

=1—-

Apply the above bound recursively to complete the proof. O
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Convergence for constant stepsizes

Convergence rate: ifn,=n= 7A1(Q)i>\n(0)' then
M (Q) — A,,(Q))t
xE—x¥l, < | 22— ~7 x? — x*

where A\1(Q) (resp. An(Q)) is the largest (smallest) eigenvalue of Q.

m often called linear convergence or geometric convergence

m since the error lies below a log-linear plot of error vs. iteration count
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Different rates of convergence speed

—  Alg. A (Linear, O(c"))
— Alg. B (Sublinear, O(1/t))
— Alg. C (Superlinear, O(c"))

Error (log scale)

| | | | |
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Number of lterations (t)
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Convergence for constant stepsizes

Convergence rate: ifn,=n= m then
. A(Q) - )\n(Q)>t 0_
X' x* |l < [ 0 ) X0 = x
I =l < (SED2 o,

where \1(Q) (resp. A\n(Q)) is the largest (smallest) eigenvalue of Q.

m the convergence rate is dictated by the condition number

_ M(Q)
Q)

of Q, or equivalently, £ := - & - An(V2A(x))
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The impact of the condition number

The condition number of Q dictates the geometry of the loss surface.

Well-conditioned (x ~ 1)

lll-conditioned (x > 1)

= When contours are circular, the negative gradient points
directly at the minimum. Convergence is fast.

= When contours are highly elliptical, the gradient is almost
orthogonal to the direction of the minimum, causing zig-zags.
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Exact line search

The stepsize rule n; =n = m relies on the spectrum of Q,
which requires preliminary experimentation.

Another more practical strategy is the exact line search rule

e = arg min fx" — nVAxE)) (4)
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Exact line search

The stepsize rule n; =n = m relies on the spectrum of Q,
which requires preliminary experimentation.

Another more practical strategy is the exact line search rule

ne = arg min {x" — nVAx"))
n=>0
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Convergence for exact line search*

Convergence rate:  if 1, = arg min,>o f{x* — nVf(x")), then

. o (A(Q) = (@) )
1) - 1) < (Ll ) (o) - )

m stated in terms of the objective values

m convergence rate not faster than the constant stepsize rule
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Convergence for exact line search*

Proof: For notational simplicity, let g = VA(x") = Q(x* — x*). It can be
verified that exact line search gives (only holds for quadratic loss)

= (g9 g’
" (g)7Qet

Using f{x) = 3(x* —x*) TQ(xf — x*) = 3(g") "Q g, this gives
1 * *
fx*) = E(Xt — g’ —x )TQ(Xt — 8" —x")

1 . . n?
= S0 ) TR <) — el + L (g) T Q!
‘I3

1 " ! s
20D D 5 o

N et .
- (1 ((gf)Tng)((gf)Tolgf)> )
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Convergence for exact line search*

Proof (cont.): From Kantorovich's inequality

bl L ANQMQ)
T Q) T (@ + Q)

we arrive at

t+1 4>‘1(Q)>‘n(0) t
0 < (1 ) paye) o)

o )‘1(Q)_)‘H(Q) 2 xt
= </\1(Q)+>\n(0)> fx)

This concludes the proof since f{x*) = miny ix) =0
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In-Class Lab: Calculating the descent

Goal: To manually compute the first few steps of Gradient Descent and
see how the learning rate (7)) affects convergence.

The Setup

m Our function: A simple parabola, fx) = x°.
m Its gradient: f(x) = 2x. The minimum is at x = 0.
m The GD update rule: x;11 = x; — 1 - f(x).
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Part 1: A “Good" learning rate

Let’s start at xp = 4 with a learning rate of n = 0.1.

Instructions: Fill out the table below for the first 3 steps of GD.

t Xt f/(xt) = 2Xt n- f/ (Xt) Xt+1
0 4 8 0.8 3.2
1 3.2

2

Question
What do you observe about the value of x;? Is it approaching the
minimum at x = 07
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Part 2: A “Bad” learning rate

Let’s see what happens if the learning rate is too large. Start again at
xo = 4 but with n =1.1.

Instructions: Fill out the table for the first 3 steps.

t Xt fl(xt) = 2Xt n- f/(xt) Xt+1
0 4 8 8.8 -4.8
1 -48

2

Question
What is happening to the value of x; now? Is the algorithm converging?
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Part 3: Backtracking line search

Instead of a fixed 7, let's find one automatically at the first step (t = 0).
m Start at xg = 4 and backtracking parameters: o = 0.5, § = 0.5.
m Start with an initial guess of n = 1.0.

Instructions: Check the Armijo condition. If it's true, update n « (n
and check again. Stop when the condition is false.

Check if :  fix; — nVf{x)) > f{xt) — 0¢77|‘Vf(xt)”§

Current 7 | LHS: {4 —7-8) | RHS: 16 —0.5-7- 64 | Is LHS > RHS?
1.0 (4-8)2=16 16—-32=-16 Yes

0.5

What is the final step size 7y accepted by the algorithm? Using this 7y,
hat is the next point, x;?
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Solutions: The effect of the learning rate

Part 1: Converging (n = 0.1) Part 2: Diverging (n = 1.1)
t ox fF(x) 7-f(x) X t oxe  F(xe) 7-F(x) X1
0 40 8.0 0.8 3.2 0 4.0 8.0 8.8 -4.8
1 32 6.4 0.64 2.56 1 -48 -96 -10.56 5.76
2 256 5.12 0.512 2.048 2 576 1152 12,672 -6.912

A learning rate that is too large can cause the algorithm to overshoot the
minimum and diverge completely.

Part 3: Backtracking solution: The final accepted step size is
1o = 0.5. The next point is:

X1:X07’r]o~)d(Xo):4*0.5'8:0

Backtracking prevents divergence by finding a safe stepsize automatically.
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Recap and fine-tuning

m What we have talked about today?
= What is gradient descent and why it works?
= What is its performance on quadractic minimization?
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