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Review: Linear models for House Price predictions

Let’s make our price predictor more realistic by adding more features.

Size (sq. ft.) # Bedrooms Age (years) Price ($k)
1200 3 10 250
2000 4 5 350
800 2 25 150

The model becomes a weighted sum of these features (Assuming x0 = 1):

hθ(x) = θ0 + θ1x1 + θ2x2 + θ3x3 = θTx

Our goal is to find the best parameter vector θ by minimizing

L(θ) = 1
2m

m∑
i=1

(hθ(x(i))− y(i))2
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Your understanding of last lecture
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Beyond linear models: Non-linear models

What if the relationship between features and labels isn’t a straight line?
A Non-linear Relationship

The model hθ(x) can be any function, like a polynomial, or a complex
neural network. The core idea remains the same: we find the
parameters θ that minimize the fitting loss.
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Solution 1: Polynomial regression

We can create a “non-linear” model by adding polynomial features. We’re
still fitting a “linear model”, but to expanded features like x, x2, x3, . . .

hθ(x) = θ0 + θ1x + θ2x2

Fitting a Quadratic Curve

This allows our model to learn curves instead of just straight lines.
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Solution 2: Piecewise models (e.g., Trees)

Instead of a global curve, models like Decision Trees or Random
Forests split the data into regions and fit a simpler model (like a
constant) in each region.

Fitting a Step-Function

This creates a ”step-function” approximation of the curve.
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Solution 3: Neural networks

Neural Networks learn complex curves by combining many simple
non-linear functions in layers. Can approximate any continuous function.

Input x

h1

h2

h3

Output y

The core idea is the same: even for a complex NN, we still just define a
loss function and use optimization to find the best parameter θ.
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NNs are not “new species”

Time
1950s

Perceptron
(single linear unit)
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Neural Networks (NNs): The building block

A neural network is built from simple units called neurons (or
perceptrons). A single neuron:

1. Computes a linear combination of inputs: wTx + b.
2. Applies a non-linear activation function σ(·).

x1

x2

...

σ hθ(x)

Hypothesis hθ(x):

hθ(x) = σ(wTx + b)

Parameters θ:

w ∈ Rd: weight vector
b ∈ R: bias term
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Architecture 1: The multilayer perceptron (MLP)

We gain power by arranging neurons in layers. The output of one layer
becomes the input for the next. This is a fully-connected or dense NN.

x1

x2

σ hθ(x)

Hidden Layer

Input Layer

Output Layer The model hθ(x) is now a
composition of functions,
allowing it to learn complex,
non-linear boundaries.

For one hidden layer: hθ(x) = σ2
(

W2
(
σ1(W1x + b1)

)
+ b2

)
Parameters θ: all weight matrices and bias vectors {W1,b1,W2,b2}.
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NNs are not “new species”

Time
1950s

Perceptron
(single linear unit)

1980s

MLPs + Backprop
(nonlinear hidden layers)

2010s+

Modern Deep NNs
(scaling + GPUs + data)

Key message: MLPs/NNs are an evolution of linear models with nonlinearities
and scale, not a completely new species.
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Problem 1: The parameter explosion
To feed an image to MLP, first ”flatten” 2D grid of pixels into 1D vector.

Input Image
Flatten

Vector Hidden Layer

Every input pixel connects to every neuron. For a tiny 28 × 28 image
connecting to a 128-neuron layer, this requires:

28 × 28 × 128 = 100,352 weights
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Problems 2&3: Lost structure & redundant learning

Loss of spatial structure

A B

C D
Flatten

A

B

C

D

Flattening an image destroys
the 2D grid.
The model no longer knows
that pixel A is above C, or that
B is to the right of A.

Not translationally invariant

Eye?

Learns weights for top-left eye

Eye?

Must learn new weights
for bottom-right eye

The network learns weights to
detect a pattern in one location.
Not reuse knowledge elsewhere.
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Architecture 2: Convolutional neural networks (CNNs)

CNNs use a special layer called a convolutional layer. This layer applies
a small filter (or kernel) across the entire image to detect local patterns.

Input X

Filter W

Feature Map

Model hθ(X): The core operation is the 2D convolution (X ∗ W). The
output feature map at position (i, j) is:

(X ∗ W)i,j =
∑

m

∑
n

Xi−m,j−n · Wm,n

hθ(X) is a sequence of such convolutions, activations, and pooling layers.
Parameters θ: The values in the filters (e.g., W) that are learned.
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CNN step-by-step computations

Convolution operation:
1. Place the filter over a patch.
2. Perform element-wise

multiplication and sum the results.
3. Place this in the corresponding

cell of Feature Map.
4. Slide the filter over and repeat. Computation for top-left output cell:

(1×1) + (0×0) + (1×1) + (0×0) + (1×
1) + (1×0) + (1×1) + (0×0) + (1×1) = 5

Key Idea: Parameter sharing. The same filter W is used across the
entire image. This is incredibly efficient and allows the model to detect a
feature no matter where it appears (translation invariance).
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Problem with MLPs for sequential data

Consider the sequential data (like text) and why MLPs are a poor fit.

The cat sat.

Requires 3 inputs

The cat sat on...

Requires a different architecture!

Variable length data:
MLPs require a fixed-size input
vector, but sequential data like
sentences can be any length.

No sense of order:
It has no built-in notion that
”cat” comes after ”The,” losing
crucial contextual information.

No parameter sharing:
The weights learned for the first
word are separate from the
weights for the third word.
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Architecture 3: Recurrent Neural Networks (RNNs)

RNNs process sequences by maintaining a hidden state ht that acts as a
memory, passed from one time step to the next.

A

xt−1

ht−1

A

xt

ht

Model hθ(x1, . . . , xT):
recurrent update for hidden
state ht, output yt:

ht = σ(Whhht−1 + Wxhxt + bh)

yt = σ(Whyht + by)

Parameters θ: The shared {Whh,Wxh,Why} and biases at every step.
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Optimization problem for regression
The goal of training is to find parameters θ that minimize the loss:

min
θ

L(θ) := 1
2m

m∑
i=1

(
hθ(x(i))︸ ︷︷ ︸

Predictedi

− y(i)︸︷︷︸
Actuali

)2

.

Notes.
hθ(x(i)) = f(x(i);θ) can be any model: linear, polynomial, MLP, CNN, etc.

The gradient can now be written compactly in terms of these residuals:

∇θL(θ) = 1
m

m∑
i=1

ei︸︷︷︸
Residual

·∇θhθ(x(i))︸ ︷︷ ︸
Model’s Gradient

where we define the error for a single data point i as the residual:

ei(θ) = hθ(x(i))︸ ︷︷ ︸
Predictedi

− y(i)︸︷︷︸
Actuali

.
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Gradient of the MSE Objective
The Mean Squared Error (MSE) objective is the squared L2 norm of e.

Let e(θ) = hθ(X)− y =⇒ L(θ) = ∥hθ(X)− y∥2
2 = e(θ)Te(θ)

We use the multivariate chain rule to find the gradient with respect to θ.

∇θL(θ) =
(
∂e(θ)
∂θ

)T

︸ ︷︷ ︸
Jacobian Transposed

∇eL(θ)︸ ︷︷ ︸
Gradient w.r.t. residual

∇eL(θ) = ∇e(eTe)
= 2e(θ)

∂e
∂θ

=
∂hθ(X)

∂θ

Combining the pieces gives the final gradient expression:

∇θL(θ) = 2
(
∂hθ(X)

∂θ

)T

︸ ︷︷ ︸
Sensitivity

(hθ(X)− y)︸ ︷︷ ︸
Error
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Reduction to linear regression (vectorized form)

Given data matrix X ∈ Rm×d and targets y ∈ Rm, seek parameters θ ∈ Rp that

min
θ∈Rp

1
2m ∥ hθ(X) − y ∥2

2 .

Notes.
hθ(X) ∈ Rm stacks predictions

(
hθ(x(1)), . . . , hθ(x(m))

)⊤.

Linear model special case: hθ(X) = Xθ, so min
θ

1
2m∥Xθ − y∥2

2.

Here
Jθ(X) =

∂hθ(X)

∂θ
= X ∈ Rm×p and e(θ) = Xθ − y.

so
∇θ

1
2m∥Xθ − y∥2

2 =
1
m X⊤(Xθ − y

)
.
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Generic Form of MSE Gradient: An Intuitive View

The gradient tells us how to update the parameters:

∇θL(θ) = 1
m

m∑
i=1

ei︸︷︷︸
How wrong

was I?

· ∇θhθ(x(i))︸ ︷︷ ︸
How sensitive is the model

to each parameter?

Deeper Insights⋆
Probabilistic view: Why MSE? Loss arises from assuming the errors
(ei) are independent and follow a Gaussian distribution N (0, σ2) -
equivalent to Maximum Likelihood Estimation (MLE).

Geometric view: For linear models, the optimal solution occurs
when the error vector e is orthogonal to the feature space-meaning
we’ve explained all the variance possible with our features.
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A concrete nonconvex regression loss

Model: ŷ(x; u, v) = (uv) x with
θ := [u, v]⊤, data: (x, y) = (1, 1).

L(θ) = L(u, v) = (uv − 1)2.

Let θ1 = (1, 1) and θ2 = (−1,−1).
Then

L(θ1) = 0, L(θ2) = 0, L
(
θ1+θ2

2
)
= 1.

Therefore,
L
(
θ1+θ2

2
)
> 1

2
(
L(θ1) + L(θ2)

)
,

so it violates the definition of convexity and thus L(θ) is nonconvex.
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Possibly nonconvex landscape of nonlinear regression

Gradient descent on a nonconvex loss surface can get pulled into a
nearby basin instead of the global minimum.
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Marriage and house hunting: A perfect home?

Instead of predicting the exact price, what if
If Price < $300k → Worth Buying (y = 1)
If Price ≥ $300k → Not Worth Buying (y = 0)
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Classification - Regression with discrete outputs

Still a linear model

hθ(x) = θ0 + θ1x1 + θ2x2 + θ3x3 = θTx?

500 1,000 1,500 2,000 2,500 3,000
0

2

4

6

Size (Sq. Ft.)

#
of

Be
dr

oo
m

s

Classifying Houses

Worth Buying (1)
Not Worth Buying (0)

The model’s raw output is a
continuous score, not a class.
For a house far from the line,
this score can be a large
positive or negative number.

This score cannot be
interpreted as a probability.

Need a model that squashes its output as probability between 0 and 1.
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A model for classification

Our model can’t just output any number; it should output a probability
between 0 and 1. We can use the sigmoid function σ(z) to achieve this.

σ(z) = 1
1 + e−z

Our model, Logistic Regression, first
calculates a weighted sum z = θTx, then
passes it through the sigmoid:

hθ(x) = σ(θTx) 0.5

1

Sigmoid Function

We can then set a threshold (e.g., if probability > 0.5, predict ’buy’).
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New loss function for classification

Mean Squared Error (MSE) works poorly for classification. Need a loss
that penalizes the model for being confidently wrong about a class.
Log Loss (or Binary Cross-Entropy) - when the true label is buy (y = 1):

Loss = − log(hθ(x))

If the model predicts a high probability (e.g., 0.99), the loss is low:
− log(0.99) ≈ 0.01. Good!
If the model predicts a low probability (e.g., 0.01), the loss is high:
− log(0.01) ≈ 4.6. Bad!
In contrast, if the model predicts a low probability (e.g., 0.01), the
MSE is MSE = (0.01 − 1)2 ≈ 0.98. Not too Bad!

LogLoss penalizes much more strongly!
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The full log loss (binary cross-entropy)

What about the true label is don’t buy (y = 0)? We want to penalize
the model for predicting a high probability - the other side of the log

Loss = − log(1 − hθ(x))

If model predicts low probability (e.g., 0.01), loss is low:
− log(0.99) ≈ 0.01. Good!
If model predicts high probability (e.g., 0.99), loss is high:
− log(0.01) ≈ 4.6. Bad!

Combine both cases into a single, elegant equation for data point (x, y):

Loss(θ) = −
(

y log(hθ(x)) + (1 − y) log(1 − hθ(x))
)

Notice only one term is “active” – on whether y = 1 or y = 0.
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Optimization problem for (binary) classification

Just like in regression, our goal is to find parameters θ that minimize
the average loss over all m training examples:

min
θ

J(θ) = − 1
m

m∑
i=1

[
y(i) log(hθ(x(i))) + (1 − y(i)) log(1 − hθ(x(i)))

]
where our model is the sigmoid function: hθ(x(i)) = σ(θTx(i)).

Key Insight
This loss function is convex! Unlike the MSE + Sigmoid combination,
this formulation guarantees that gradient descent can find the global
minimum. This is why Log Loss is the standard for logistic regression.
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What if there are more than two options?

Real-world problems often have more than two categories. Instead of a
”yes/no” answer, we need to choose from a set of discrete labels.

Classifying a news article as ’Sports’,
’Politics’, or ’Tech’.
Identifying a handwritten digit (0-9).
Diagnosing a disease from a set of
possible conditions.

The Model: Softmax Regression
Instead of the sigmoid function, we use
the softmax function.
Softmax takes a vector of scores and
turns it into a probability distribution,
where all outputs sum to 1.

2.0

1.0

0.1

Logits

Softmax 0.660.24

0.10

Probs

Sums to 1.0

For K classes, the probability of
the j-th class is given by:

hθ(x)j = P(y = j|x)

=
exp(θT

j x)∑K
k=1 exp(θ

T
k x)
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Optimization for Multi-class Classification

First, we represent the label y(i) as a one-hot vector of size K.
If a news article is ’Sports’ (class 1 of 3), its label is y(i) = [1, 0, 0]T.
The model hθ(x) now outputs a vector of K probabilities.

The goal is still to minimize the Categorical Cross-Entropy:

min
θ

J(θ) = − 1
m

m∑
i=1

K∑
k=1

y(i)k log(hθ(x(i))k)

where our model is the Softmax function: hθ(x(i))k = P(y = k|x(i)).

Key Insight
This loss function is also convex and differentiable. This formulation
guarantees that gradient descent can find the global minimum.
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The unified view of supervised learning

1. Given training data {(x, y)}, define a Model hθ(x)

2. Define a Loss Function L(θ) based on {(x, y)}

3. Minimize Loss with an Optimization Algorithm

This three-step framework – Model, Loss, and Optimization - is the
fundamental blueprint for almost all of supervised machine learning.
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What If We Don’t Have Any Labels?
So far, we’ve assumed we have labeled data (y values) for every house x.
This is called Supervised Learning.

Feature 1

Fe
at

ur
e

2

What if we are just given a dataset of houses with their features, but no
“Worth Buying” labels? Can we still find meaningful patterns?

Yes! This is called Unsupervised Learning.
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Clustering: Finding natural groups in data

Clustering - grouping objects such that objects in the same group (or
cluster) are more similar to each other than to those in other clusters.

Feature 1

Fe
at

ur
e

2

Before Clustering

Feature 1

Fe
at

ur
e

2

After Clustering

Identifying neighborhood archetypes: Grouping houses based on
features like price, age, and size to discover market segments like ”starter
homes,” ”luxury condos,” or ”historic districts.” in Urban Planning
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Training Objective for Clustering - K-Means

To define a “good” cluster, we need to find the best cluster assignments
and the best cluster centers simultaneously.

We jointly optimize two sets of variables:
Cluster assignments (c): Let c(i) be the
index of the cluster assigned to point x(i).
Cluster centroids (µ): Let µk be the
center of the k-th cluster.

µ1

µ2

The complete objective is to minimize the sum of squared distances from
each point to its assigned centroid:

min
c,µ

J(c,µ) =
m∑

i=1
||x(i) − µc(i) ||2

This joint objective is non-convex and NP-hard to solve directly. Instead,
we use the K-Means algorithm which alternates between two steps.
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Summary: Three Classic ML Paradigms

Regression

Predict a continuous
value.

Example: What is the
exact price of this

house?

Classification

Predict a discrete
label.

Example: Is this house a
”good deal” (yes/no)?

Clustering

Find hidden groups in
data.

Example: What are the
natural market

segments of houses?
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Self-Supervised Learning (SSL): The Core Idea
We have massive unlabeled datasets. How can we learn from them
without human labels?

The Core Idea: We create a “puzzle” or a pretext task, and force the
model to understand data’s underlying structure by solving this puzzle.

House Data
(1500 sq ft, 3 beds, ... )

Input x′
(?, 3 beds, ... )

Label ypretext
1500

hθ
Create
Puzzle

Predict

Figure: Learn by predicting the piece of data that was intentionally hidden.
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SSL in Action: A Pretext Task for Housing Data

Let’s design a pretext task for our unlabeled housing dataset.

Example: House Feature Prediction
1. Start with a complete data point:

A house with features like (1500 sq ft, 3 beds, ...).
2. Create the input and pseudo-label:

We ”mask” or hide one feature, like the square
footage.

• Input x′: ([?], 3 beds, ...).
• Pseudo-Label ypretext: 1500.

3. The Task: Train the model to predict the original
value (1500) from the rest of the features.

Input: House
with missing sq ft

hθ

Prediction:
1500 sq ft
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The SSL Objective & The Ultimate Goal

We can generate millions of these ”pseudo-labeled” examples, and the
Training Objective is to minimize a supervised loss (e.g., Cross-Entropy)
on the pretext task with y(i)pretext from the unmasked part of the data

min
θ

J(θ) =
m∑

i=1
Loss(hθ(x′(i)), y(i)pretext)

Transfer learning via fine-tuning
The final model hθ that predicts square footage is usually not our goal.
We can then slightly adjust (fine-tune) θ for our real, downstream task
(like classifying “Good Deals”) using our small set of human-labeled data.
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What If We Have a Small Set of Labeled Data?

Now, let’s say we have a small, precious set of labeled data for our
actual task (e.g., 100 houses labeled as ”Good Deal”).

Strategy A: Fine-Tuning
We can take our pre-trained model
and simply fine-tune it using only
our 100 labeled examples. This is a
standard two-step process.

Strategy B: Semi-Supervised
Alternatively, we can train a model
using both the 100 labeled examples
and the millions of unlabeled
examples at the same time.

Semi-Supervised Learning is a strategy that combines labeled and
unlabeled data in a single training process to learn a better model.
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The Intuition: Use Unlabeled Data as a Guide

The key idea is to leverage a large number of unlabeled houses to reveal
the true structure of the market.

The Cluster Assumption: A good decision
boundary should not pass through high-density
areas. It should lie in the ”gap” between
natural groups.

This means that nearby points are likely to have the same label.
A 1500 sq ft house and a nearly identical 1505 sq ft house should
get the same prediction.
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Semi-Supervised Training Objective

1. Supervised loss. This is the standard Binary Cross-Entropy loss,
but calculated only on the small set of labeled data (L).

Lsup(θ) =
∑

(x,y)∈L
BCE(hθ(x), y)

2. Unsupervised Consistency Loss. This loss is calculated on the
large set of unlabeled data (U). It penalizes if the model gives
different predictions for x and its augmented version augment(x).

Lunsup(θ) =
∑
x∈U

||hθ(x)− hθ(augment(x))||2

The total loss is a weighted sum, where λ controls the importance of the
consistency term

min
θ

J(θ) = Lsup(θ) + λLunsup(θ)



Recap and fine-tuning

What we have talked about today?
⇒ How to extended from linear to nonlinear regression?
⇒ What are the related optimization challenges?
⇒ How about other loss functions/types of machine learning?

Welcome anonymous survey!


	Other architectures for machine learning
	Other settings of machine learning

