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Review: Linear models for House Price predictions

Let’s make our price predictor more realistic by adding more features.

Size (sq. ft.) # Bedrooms Age (years) Price ($k)

1200 3 10 250
2000 4 5 350
800 2 25 150

The model becomes a weighted sum of these features (Assuming xp = 1):

hg(x) =0+ O1x1 + Ooxo + O3x3 = 07x
Our goal is to find the best parameter vector 8 by minimizing

L(0) = 5 D (ho(x(?) ~ Y72

i=1
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Your understanding of last lecture

Please rate your understanding about the following aspects:

8
I i1(llost) EEN2 W3 N4 M S5/ folowed every step)

Basic algorithm and theory Machine learning applications
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Beyond linear models: Non-linear models

What if the relationship between features and labels isn't a straight line?

A Non-linear Relationship

The model hg(x) can be any function, like a polynomial, or a complex
neural network. The core idea remains the same: we find the
parameters @ that minimize the fitting loss.

@
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Solution 1: Polynomial regression

We can create a “non-linear” model by adding polynomial features. We're
still fitting a “linear model”, but to expanded features like x, X%, X3, . ..

hg(x) = 6 + O1x + 025

Fitting a Quadratic Curve

is allows our model to learn curves instead of just straight lines.
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Solution 2: Piecewise models (e.g., Trees)

Instead of a global curve, models like Decision Trees or Random
Forests split the data into regions and fit a simpler model (like a
constant) in each region.

Fitting a Step-Function

L

This creates a "step-function” approximation of the curve.

)
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Solution 3: Neural networks

Neural Networks learn complex curves by combining many simple
non-linear functions in layers. Can approximate any continuous function.

The core idea is the same: even for a complex NN, we still just define a
loss function and use optimization to find the best parameter 6.
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NNs are not “new species”

Perceptron i
(single linear unit) The First Neural Network
Model

® Time
1950s

Warren McCulloch and Walter Pitts published a seminal paper

in 1043 that proposed a mathematical model of artificial

neurons. Their work laid the foundation for neural network

research, introducing the concept of threshold logic which }é
later influenced the developnent of AL.
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Neural Networks (NNs): The building block

A neural network is built from simple units called neurons (or
perceptrons). A single neuron:

1. Computes a linear combination of inputs: w’x + b.

2. Applies a non-linear activation function o(-).

x1 Hypothesis hg(x):

ho(x) = o(wx + b)

X2 o he(x)

Parameters 0:

m w € RY weight vector
m b € R: bias term
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Architecture 1: The multilayer perceptron (MLP)

We gain power by arranging neurons in layers. The output of one layer
becomes the input for the next. This is a fully-connected or dense NN.

Hidden Layer

Input Layer

The model hg(x) is now a
composition of functions,
allowing it to learn complex,
non-linear boundaries.

Output Layer

hg(x)

For one hidden layer:  hg(x) = 02 (W2 (Ul(Wlx + b1)) + b2)
Parameters 0: all weight matrices and bias vectors {W1, by, W5, b,}.
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NNs are not “new species”

Perceptron MLPs + Backprop Modern Deep NNs
(single linear unit) (nonlinear hidden layers) (scaling + GPUs + data)
L @ L g Time
1950s 1980s 2010s+

Key message: MLPs/NNs are an evolution of linear models with nonlinearities
and scale, not a completely new species.
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Problem 1: The parameter explosion

To feed an image to MLP, first "flatten” 2D grid of pixels into 1D vector.

Vector Hidden Layer

e

=1 —

Flatten
—

Inpu

Every input pixel connects to every neuron. For a tiny 28 x 28 image
connecting to a 128-neuron layer, this requires:

28 x 28 x 128 = 100,352 weights

ECE 5290/7290 & ORIE 5290 13/45



Problems 2&3: Lost structure & redundant learning

Loss of spatial structure Not translationally invariant

A B T
} FIatteg
cC|D

Learns weights for top-left eye

m Flattening an image destroys ~ ,
the 2D grid. H

T
m The model no longer knows Must learn new weights

that pixel A is above C, or that for bottom-right eye
B is to the right of A.

|l |m| >

m The network learns weights to

detect a pattern in one location.

m Not reuse knowledge elsewhere.
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Architecture 2: Convolutional neural networks (CNNs)

CNNs use a special layer called a convolutional layer. This layer applies
a small filter (or kernel) across the entire image to detect local patterns.

Input X Feature Map

Model hg(X): The core operation is the 2D convolution (X * W). The
output feature map at position (i, ) is:

(X * W)i,j = Z Z Xi—m,j—n ' Wm,n
m n

he(X) is a sequence of such convolutions, activations, and pooling layers.
Parameters 0: The values in the filters (e.g., W) that are learned.
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CNN step-by-step computations

Convolution operation: lnpt X er Festure Map

1. Place the filter over a patch.

2. Perform element-wise
multiplication and sum the results.

3. Place this in the corresponding
cell of Feature Map.

Computation for top-left output cell:
(I1x1)+(0x0)+ (1x1)+(0x0)+ (1x
1)+ (1x0)+ (1x1)+(0x0)+(1x1) =5

4. Slide the filter over and repeat.

Key Idea: Parameter sharing. The same filter W is used across the
entire image. This is incredibly efficient and allows the model to detect a
feature no matter where it appears (translation invariance).
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Problem with MLPs for sequential data

Consider the sequential data (like text) and why MLPs are a poor fit.

m Variable length data:
MLPs require a fixed-size input
vector, but sequential data like
sentences can be any length.

m No sense of order:
It has no built-in notion that
"cat” comes after "The,” losing
’The‘ ’ cat ‘ ’ sat Hon._.‘ crucial contextual information.

Requires 3 inputs

m No parameter sharing:
The weights learned for the first
word are separate from the
weights for the third word.

3 17/45
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Architecture 3: Recurrent Neural Networks (RNNs)

RNNs process sequences by maintaining a hidden state h; that acts as a
memory, passed from one time step to the next.

Xt—1 X¢
Model hg(x1,...,x7):
recurrent update for hidden
state hy, output y;:

Y

h; = o(Wpphe—1 + Wipx; + bp)
l l Yt = CT(Whyht + by)

hey h,

Parameters 6: The shared {W,, W,,, Wj,} and biases at every step.

18/45
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Optimization problem for regression

The goal of training is to find parameters 8 that minimize the loss:

2
)

meln L(6) := —Z( y(’ > .
Predicted; Actual;

Notes.
n ho(x(i)) = f(x(i); 0) can be any model: linear, polynomial, MLP, CNN, etc.
m The gradient can now be written compactly in terms of these residuals:
Vol(0) = Z e -Vohe(x)
i= S——
1 Residual  Model's Gradient
where we define the error for a single data point i as the residual:
e(0) = ho(x) = Y1) .
—_—— =~
- Predicted; Actual;
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Gradient of the MSE Objective

The Mean Squared Error (MSE) objective is the squared L2 norm of e.

Let e(8) = hg(X) —y = L(6) = [|hg(X) — y||> = e(8) Te(6)

We use the multivariate chain rule to find the gradient with respect to 6.
Vel(0)

oe(0)\ "
ooy~ (%0))
Gradient w.r.t. residual

Jacobian Transposed

Vel(6) = Ve(eTe) Oe _ 9he(X)
_ 2(6) 060 — 06

Combining the pieces gives the final gradient expression:

Vol(8) =2 (ahgéx)> (ho(X) —y)

s N——e Error
' @ Sensitivity

ECE 5290/7290 & ORIE 5290 20 /45




Reduction to linear regression (vectorized form)

Given data matrix X € R™*¢ and targets y € R™, seek parameters 6 € R” that

. 1
min || he(X) — y [5.

6crP 2m
Notes.
= hg(X) € R™ stacks predictions (hg(x"),..., hg(x(”’)))T.
m Linear model special case: hg(X) = X0, so mein % X6 — ylj3.

m Here
_ 0he(X)

00

Jo(X) =XeR™? and e(0)=X0-—y.

SO

1 5 1 1
Veﬁllxe—yllﬁ ;X (Xa—Y)
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Generic Form of MSE Gradient: An Intuitive View

The gradient tells us how to update the parameters:

m

1 i
VgL(@) = — E (SH : Vghg(x( ))
m i=1 y v
"7 How wrong How sensitive is the model
was 17 to each parameter?

Deeper Insights*

m Probabilistic view: Why MSE? Loss arises from assuming the errors
(&) are independent and follow a Gaussian distribution N(0, 0?) -

equivalent to Maximum Likelihood Estimation (MLE).

m Geometric view: For linear models, the optimal solution occurs
when the error vector e is orthogonal to the feature space-meaning

we've explained all the variance possible with our features.
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A concrete nonconvex regression loss

Model: j\/(X, u, V) = (UV) x with oy ngnlinear regression loss: L(u,v) = (uv = 1)2 (noncc

0 :=[u,V", data: (x,y) = (1,1). ’0\ 77 \Q

2
6, =(1,1) (loss=by

L(6) = L(u,v) = (uv—1)2

oMidpoint (0,0) (loss=1)

Let 61 = (l, ].) and 02 = (_]_7 _1) > oof”
Then -05

L(61) =0, L(f2)=0, L(%%)=1. o0 i

Therefore,
L(%5%) > 3(L(6r) + L(62)),

so it violates the definition of convexity and thus L(#) is nonconvex.
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Possibly nonconvex landscape of nonlinear regression

Gradient descent on a nonconvex loss surface can get pulled into a
nearby basin instead of the global minimum.
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Marriage and house hunting: A perfect home?

Marriage and house hunting: A perfect home?

Instead of predicting the exact price, what if
m If Price < $300k — Worth Buying (y=1)
m If Price > $300k — Not Worth Buying (y = 0)
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Classification - Regression with discrete outputs

Still a linear model

hg(X) =0+ O1x1 + Ooxo + O3x3 = 07x?

Classifying Houses , .
B m The model's raw output is a

6’ ) continuous score, not a class.
x Not Worth Buying (0) .
For a house far from the line,
1 this score can be a large
positive or negative number.

# of Bedrooms

m This score cannot be
interpreted as a probability.

0 1 ! ! ! ! !
500 1,000 1,500 2,000 2,500 3,000
Size (Sq. Ft.)

Need a model that squashes its output as probability between 0 and 1.

€
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A model for classification

Our model can't just output any number; it should output a probability

between 0 and 1. We can use the sigmoid function o(z) to achieve this.

Sigmoid Function

Our model, Logistic Regression, first

calculates a weighted sum z= 07x, then
passes it through the sigmoid:

he(x) = o(67x)

We can then set a threshold (e.g., if probability > 0.5, predict 'buy’).
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New loss function for classification

Mean Squared Error (MSE) works poorly for classification. Need a loss
that penalizes the model for being confidently wrong about a class.

Log Loss (or Binary Cross-Entropy) - when the true label is buy (y = 1):

Loss = — log(hg(x))

m If the model predicts a high probability (e.g., 0.99), the loss is low:
—10g(0.99) ~ 0.01. Good!

m If the model predicts a low probability (e.g., 0.01), the loss is high:
—1log(0.01) ~# 4.6. Bad!

m In contrast, if the model predicts a low probability (e.g., 0.01), the
MSE is MSE = (0.01 — 1)2 ~ 0.98.  Not too Bad!

Logloss penalizes much more strongly!

S
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The full log loss (binary cross-entropy)

What about the true label is don’t buy (y = 0)? We want to penalize
the model for predicting a high probability - the other side of the log

Loss = —log(1 — he(x))

m If model predicts low probability (e.g., 0.01), loss is low:
—log(0.99) =~ 0.01. Good!

m If model predicts high probability (e.g., 0.99), loss is high:
—1log(0.01) ~# 4.6. Bad!

Combine both cases into a single, elegant equation for data point (x, y):
Loss(0) = —(ylog(hg(x)) +(1—y)log(1l— hg(x)))
Notice only one term is “active” — on whether y =1 or y = 0.
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Optimization problem for (binary) classification

Just like in regression, our goal is to find parameters € that minimize
the average loss over all m training examples:

meln JO)=—— Z [ log(he(x)) + (1 — y) log(1 — he(x)))
where our model is the sigmoid function: hg(x()) = (8 7x()).
Key Insight
This loss function is convex! Unlike the MSE + Sigmoid combination,

this formulation guarantees that gradient descent can find the global
minimum. This is why Log Loss is the standard for logistic regression.
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What if there are more than two options?

Real-world problems often have more than two categories. Instead of a
"yes/no" answer, we need to choose from a set of discrete labels.

m Classifying a news article as 'Sports’,

"Politics’, or 'Tech'.

m Identifying a handwritten digit (0-9).

m Diagnosing a disease from a set of

possible conditions.

The Model: Softmax Regression

m Instead of the sigmoid function, we use

the softmax function.

m Softmax takes a vector of scores and
turns it into a probability distribution,

where all outputs sum to 1.

©)
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For K classes, the probability of
the j-th class is given by:
he(x); = P(y = jlx)

B exp(Bij)
S exp(6])

Softmax

Sums to 1.0
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Optimization for Multi-class Classification

First, we represent the label y{) as a one-hot vector of size K.
m If a news article is 'Sports’ (class 1 of 3), its label is y() = [1,0,0]T.
m The model hg(x) now outputs a vector of K probabilities.

The goal is still to minimize the Categorical Cross-Entropy:

m

1
mm J(0) = —EZZy log(he(x),)

i=1 k=1

where our model is the Softmax function: hg(x(0), = P(y = k|x().

Key Insight
This loss function is also convex and differentiable. This formulation
guarantees that gradient descent can find the global minimum.
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The unified view of supervised learning

[1. Given training data {(x, y)}, define a Model hg(x)]

Y

[2. Define a Loss Function L(0) based on {(x, y)}]

Y

[3. Minimize Loss with an Optimization Algorithm]

This three-step framework — Model, Loss, and Optimization - is the
fundamental blueprint for almost all of supervised machine learning.

P
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What If We Don't Have Any Labels?

So far, we've assumed we have labeled data (y values) for every house x
This is called Supervised Learning.

Feature 2

Feature 1

What if we are just given a dataset of houses with their features, but no
“Worth Buying” labels? Can we still find meaningful patterns?

Yes! This is called Unsupervised Learning.
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Clustering: Finding natural groups in data

Clustering - grouping objects such that objects in the same group (or
cluster) are more similar to each other than to those in other clusters

Feature 2
[ ]
[ ]
[ ]
Feature 2
[ ]

Feature 1 Feature 1

Before Clustering After Clustering
m ldentifying neighborhood archetypes: Grouping houses based on
features like price, age, and size to discover market segments like "starter
B homes,” "luxury condos,” or "historic districts.” in Urban Planning
£o 0 ECE 5290/7290 & ORIE 5290 36/45



Training Objective for Clustering - K-Means

To define a “good” cluster, we need to find the best cluster assignments
and the best cluster centers simultaneously.

We jointly optimize two sets of variables: .#5
m Cluster assignments (c): Let ) be the ° e
index of the cluster assigned to point x(). ot
m Cluster centroids (u): Let i be the o o

center of the k-th cluster.
The complete objective is to minimize the sum of squared distances from
each point to its assigned centroid:

min J(c, 1) ZHX — peoll?

This joint objective is non-convex and NP-hard to solve directly. Instead,
we use the K-Means algorithm which alternates between two steps.

©)
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Summary: Three Classic ML Paradigms

Regression Classification Clustering
(]
&
Predict a continuous Find hidden groups in
value. Predict a discrete data.
label.
Example: What is the _ Example: What are the
exact price of this Example: ls”th/s house a natural market
house? good deal” (yes/no)? segments of houses?
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Self-Supervised Learning (SSL): The Core Idea

We have massive unlabeled datasets. How can we learn from them

without human labels?

The Core Idea: We create a “puzzle” or a pretext task, and force the
model to understand data’s underlying structure by solving this puzzle.

House Data

La bel }/pretext

edict

(1500 sq ft, 3 beds, ...

1500
Create Input x’
Puzzle (?, 3 beds, ... )

Figure: Learn by predicting the piece of data that was intentionally hidden.
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SSL in Action: A Pretext Task for Housing Data

Let's design a pretext task for our unlabeled housing dataset.

Example: House Feature Prediction

1. Start with a complete data point:
A house with features like (1500 sq ft, 3 beds, ...).
2. Create the input and pseudo-label:
We "mask” or hide one feature, like the square
footage.
Input x’: ([?], 3 beds, ...).
Pseudo-Label ypretext: 1500.
3. The Task: Train the model to predict the original
value (1500) from the rest of the features.

©)
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Input: House
with missing sq ft

Prediction:
1500 sq ft
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The SSL Objective & The Ultimate Goal

We can generate millions of these "pseudo-labeled” examples, and the
Training Objective is to minimize a supervised loss (e.g., Cross-Entropy)

on the pretext task with yl(,?etext from the unmasked part of the data

m|n J Z I—OSS hG y;(Jr)eteXt)

Transfer learning via fine-tuning

The final model hg that predicts square footage is usually not our goal.
We can then slightly adjust (fine-tune) 6 for our real, downstream task
(like classifying “Good Deals") using our small set of human-labeled data.

)
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What If We Have a Small Set of Labeled Data?

Now, let's say we have a small, precious set of labeled data for our
actual task (e.g., 100 houses labeled as "Good Deal").

Strategy A: Fine-Tuning Strategy B: Semi-Supervised

We can take our pre-trained model Alternatively, we can train a model
and simply fine-tune it using only using both the 100 labeled examples
our 100 labeled examples. This is a and the millions of unlabeled
standard two-step process. examples at the same time.

Semi-Supervised Learning is a strategy that combines labeled and
unlabeled data in a single training process to learn a better model.
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The Intuition: Use Unlabeled Data as a Guide

The key idea is to leverage a large number of unlabeled houses to reveal
the true structure of the market.

The Cluster Assumption: A good decision
boundary should not pass through high-density
areas. It should lie in the "gap” between
natural groups.

This means that nearby points are likely to have the same label.

m A 1500 sq ft house and a nearly identical 1505 sq ft house should
get the same prediction.
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Semi-Supervised Training Objective

m 1. Supervised loss. This is the standard Binary Cross-Entropy loss,
but calculated only on the small set of labeled data (L).

Lap(8) = > BCE(he(x),)
(x.y)eL

m 2. Unsupervised Consistency Loss. This loss is calculated on the
large set of unlabeled data (U). It penalizes if the model gives
different predictions for x and its augmented version augment(x).

unsup Z ||h9 - hg aUgment( ))||2
xeU
The total loss is a weighted sum, where A controls the importance of the
consistency term

min J(6) = Laup(8) + AlLunsup(6)

©)
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Recap and fine-tuning

m What we have talked about today?
= How to extended from linear to nonlinear regression?
= What are the related optimization challenges?

= How about other loss functions/types of machine learning?

Welcome anonymous survey!

y
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