Distributed Optimization for Machine Learning

Lecture 20 - Memory footprint of GPT and mixed precision training ${\sf ECE~5290/7290~\&~ORIE~5290}$

Tianyi Chen

School of Electrical and Computer Engineering Cornell Tech, Cornell University

November 10, 2025

Table of Contents

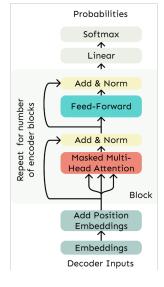
Parameter analysis of GPT

Memory analysis of GPT

Mixed precision training

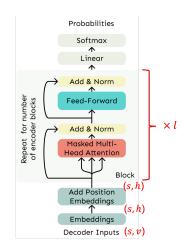
GPT: Generative pre-trained transformer

- A generative pre-trained transformer (GPT) is a type of LLMs.
- GPT is based on the decoder-only transformer.
- Each block consists of:
 - Self-attention
 - Add & Norm
 - Feed-forward
 - Add & Norm
- We will analyze the parameters, memories, and computation costs for decoder-only transformer.



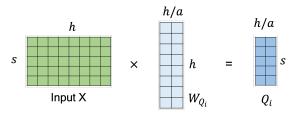
Notations for GPT

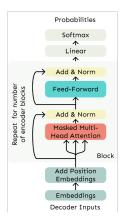
- Number of the transformer layers: ℓ
- Sequence length: s
- Vocabulary size: v
- Embedding representation dims: h



Multi-head self-attention computations

- Number of heads: a
- Dims of each W_{Q_i} , W_{K_i} and W_{V_i} : $h \times \frac{h}{a}$

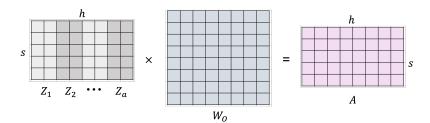




Multi-head self-attention memory

Number of heads: a

- Dims of each W_{Q_i} , W_{K_i} and W_{V_i} : $h \times \frac{h}{a}$
- Dims of each W_0 : $h \times h$



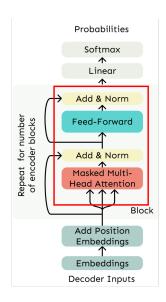
We need to store \mathbf{W}_Q , \mathbf{W}_K , \mathbf{W}_V and \mathbf{W}_Q , which is in total $4h^2$

$$3 imes rac{h^2}{lpha} imes lpha = 3 h^2 \quad ext{and} \quad h^2$$

Feed-forward layer memory

$$X' = \text{ReLU}(A \cdot W_1 + b_1) \cdot W_2 + b_2$$

- Dims of W_1 : $h \times 4h$
- Dims of each W_2 : $4h \times h$
- We need to store W_1 and W_2 : $8h^2$
- The storage of b₁ and b₂ can be ignored



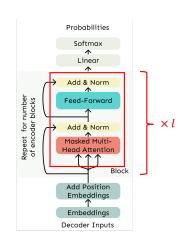
Transformer block memory

■ Multi-head attentions: 4*h*²

■ Feed-forward layers: 8h²

 $lacktriangleq \ell$ layers of attentions:

$$(4h^2 + 8h^2) \times \ell = 12\ell h^2$$



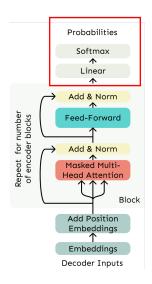
Probability predictions memory

$$p = \operatorname{Softmax}(X \cdot \mathbf{W}_V + b_v)$$

■ Dimension of \mathbf{W}_V : $h \times v$

■ We need to store \mathbf{W}_V : hv parameters

lacksquare b_V can be ignored



Total number of parameters in GPT

■ Embeddings: vh

■ Attention blocks: $12\ell h^2$

■ Probability predictions: vh

Total parameters:

$$12\ell h^2 + 2vh$$



Example: LLaMA parameters

- Now we compare our theoretical evaluations with the LLaMA model.
- $12\ell h^2 + 2vh$ is a very accurate estimation.

Actual params	Embedding h	Attention layers ℓ	Vocab size v	Estimated params
6.7B	4096	32	32000	6,704,594,944
13.0B	5120	40	32000	12,910,592,000
32.5B	6656	60	32000	32,323,665,920
65.2B	8192	80	32000	64,948,797,440

Table: Comparison of actual and estimated parameters for LLaMA models

Table of Contents

Parameter analysis of GPT

Memory analysis of GPT

Mixed precision training

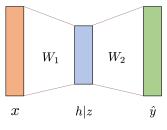
From parameters to memory usage

■ We now know how to compute the **total number of parameters**:

$$N_{\mathsf{params}} = 12\ell h^2 + 2vh$$

- But model size alone doesn't tell the full story.
- During training or inference, we must also consider:
 - Parameter storage (weights)
 - Optimizer states and gradients
 - Intermediate activation functions
 - KV cache for attention
- These determine the **true memory footprint** of a model.

Warmup: Linear neural network with batch gradient



dims:

d input dimension

(p,d) W_1

p hidden dimension (q,p) W_2

q output dimension

Forward:

$$h_b = W_1 x_b,$$

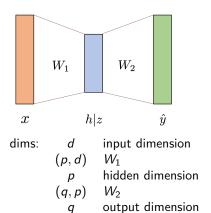
$$z_b = \sigma(h_b),$$

$$y_b = W_2 z_b,$$

$$f = \frac{1}{B} \sum_{b=1}^{B} \mathcal{L}(y_b)$$

Store $\{h_b, z_b, y_b\}_{b=1}^B$ during forward pass

Warmup: Linear neural network with batch gradient



Backward:

$$\frac{\partial f}{\partial W_2} = \frac{1}{B} \sum_{b=1}^{B} \frac{\partial \mathcal{L}}{\partial y_b} z_b^{\top},$$
$$\frac{\partial f}{\partial z_b} = W_2^{\top} \frac{\partial \mathcal{L}}{\partial y_b},$$
$$\frac{\partial f}{\partial h_b} = \frac{\partial f}{\partial z_b} \odot \sigma'(h_b),$$
$$\frac{\partial f}{\partial W_1} = \frac{1}{B} \sum_{b=1}^{B} \frac{\partial f}{\partial h_b} x_b^{\top}$$

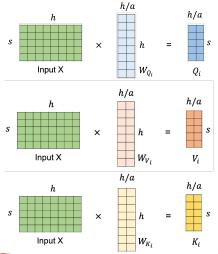
Store $\nabla_{W_1} f(W_1)$ and $\nabla_{W_2} f(W_2)$ during backward pass

Memory decomposition of training LLMs

 $\begin{array}{c} \mathsf{Model} \\ \mathsf{Parameters} \ P \end{array} \qquad \begin{array}{c} \mathsf{Gradients} \ P \end{array} \qquad \begin{array}{c} \mathsf{Optimizer} \\ \mathsf{States} \ 2P \end{array} \qquad \begin{array}{c} \mathsf{Activations} \ (?) \end{array}$

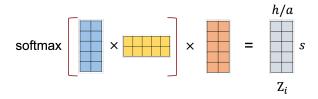
Typical memory usage breakdown in training large models.

Activations in multi-head self-attention



Store α copies of \mathbf{Q}_i , \mathbf{K}_i , and \mathbf{V}_i $3 \times \frac{\mathit{sh}}{\alpha} \times \alpha = 3\mathit{sh}$

Activations in multi-head self-attention



■ Given \mathbf{Q}_i , \mathbf{K}_i , and $\mathbf{V}_i \in \mathbb{R}^{s \times h/\alpha}$, one head self-attention is

$$Attn(\mathbf{Q}_i, \mathbf{K}_i, \mathbf{V}_i) = \operatorname{softmax}\left(\frac{\mathbf{Q}_i \mathbf{K}_i^{\top}}{\sqrt{h/a}}\right) \mathbf{V}_i$$

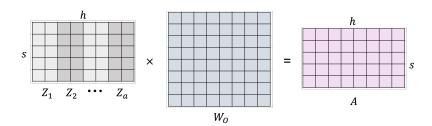
- Store $\mathbf{Q}_i \mathbf{K}_i^{\top}$ with s^2 parameters;
- Store softmax($\mathbf{Q}_i \mathbf{K}_i^{\top}$) with s^2 parameters;

• Store $\operatorname{softmax}\left(\frac{\mathbf{Q}_i\mathbf{K}_i^\top}{\sqrt{h/a}}\right)\mathbf{V}_i$ with sh/a parameters;

Activations in multi-head self-attention

Number of heads: a

- Dims of each W_{Q_i} , W_{K_i} and W_{V_i} : $h imes rac{h}{a}$
- Dims of each W_o: h × h

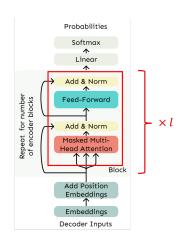


We need to store **A**, which is in total sh

Activations in Transformer block

- Multi-head attentions: $5sh + 2s^2a$
- Feed-forward layers: 9sh
- $lacktriangleq \ell$ layers of attentions:

$$(2s^2a + 14sh) \times \ell$$

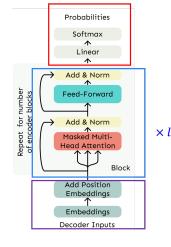


Total number of activations in GPT

- Number of the transformer layers: ℓ
- Sequence length: s
- Embedding representation dims: h
- Embedding activations: sh
- Self-attention activations: $(2s^2\alpha + 14sh) \times \ell$
- Probability activations: 2sv

Total parameters with batch size b:

$$(2s^2a + 14sh) \times \ell \times b$$



Total memory of training LLMs

Memory = Model + Gradients + Optimizer States + Activations forward/backward pass

Model Parameters P Gradients P Optimizer States 2P Activations (?)

$$(48\ell h^2 + b\ell(2s^2a + 14sh)) \times 4 \text{ Bytes (32 bits)}$$

- When hidden state *h* is large, the model dominates the memory
- lacksquare If batch-size b or sequence length s is large, the activation dominates
- The activation-incurred memory cannot be ignored

Memory estimation for GPT-3

Model Name	$n_{ m params}$	$n_{ m layers}$	$d_{ m model}$	$n_{ m heads}$	$d_{ m head}$	Batch Size	Learning Rate
GPT-3 Small	125M	12	768	12	64	0.5M	6.0×10^{-4}
GPT-3 Medium	350M	24	1024	16	64	0.5M	3.0×10^{-4}
GPT-3 Large	760M	24	1536	16	96	0.5M	2.5×10^{-4}
GPT-3 XL	1.3B	24	2048	24	128	1 M	2.0×10^{-4}
GPT-3 2.7B	2.7B	32	2560	32	80	1 M	1.6×10^{-4}
GPT-3 6.7B	6.7B	32	4096	32	128	2M	1.2×10^{-4}
GPT-3 13B	13.0B	40	5140	40	128	2M	1.0×10^{-4}
GPT-3 175B or "GPT-3"	175.0B	96	12288	96	128	3.2M	$0.6 imes 10^{-4}$

■ GPT-3 has 175B parameters; its model consumes

$$4 \times 175 \times 10^9$$
 Bytes = 700 GB

- Its gradients take 700 GB; optimizer states take 1.4 TB.
- GPT has sequence length s = 2048. When b = 1, its activation takes 444 GB (63% of the model).

When b = 128, its activation is 81 times the model size.

Table of Contents

Parameter analysis of GPT

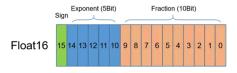
Memory analysis of GPT

Mixed precision training

Full precision training and low precision training

- Full precision training (e.g., FP32)
 - each parameter takes 4 Bytes
 - used in training most DNNs; very precise
 - takes a lot of computations and memories
- Low precision training (e.g., FP16)
 - each parameter takes 2 Bytes
 - train larger models due to computational and memory efficiency
 - not precise enough; overflow and underflow occur occasionally

Float 16 (FP16) precision



- Sign: 1 bit; 0 for positive and 1 for negative
- **Exponent**: 5 bits; range: 00001(1)-11110(30); value: $2^{-14} \sim 2^{15}$

Example:
$$00111(7) \longrightarrow 2^{7-15} = 2^{-8}$$

where -15 is the offset

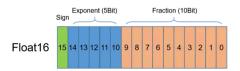
• Fraction: 10 bits;

$$\mbox{Example:} \quad 1001000000 \quad \longrightarrow \quad 1.1001000000$$

$$\longrightarrow$$
 1 + 576/1024 = 1.5625

where binary 1001000000 translates into decimal 576

Float 16 (FP16) precision



Translation law

$$(-1)^{\mathrm{sign}} \times 2^{\mathrm{exponent}-15} \times (1 + \frac{\mathrm{fraction}}{1024})$$

Largest positive number:

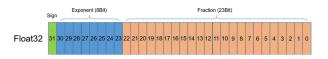
$$(-1)^0 \times 2^{15} \times (1 + \frac{1023}{1024}) = 65504$$

The range of FP16 is [-65504, +65504].

• Smallest positive number:

$$(-1)^0\times 2^{-14}\times (0+\frac{1}{1024})\approx 2^{-24}$$

Float 32 (FP32) precision



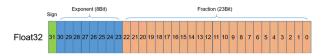
- Sign: 1 bit; 0 for positive and 1 for negative
- **Exponent**: 8 bits; range: 00000001(1) 111111110(254); **Bias:** 127, hence the exponent value is $2^{-126} \sim 2^{127}$.

Example:
$$01111111(127) \longrightarrow 2^{127-127} = 2^0 = 1$$

Fraction: 23 bits;

where binary 1001000000000000000000 translates into 4718592.

Float 32 (FP32) precision



Translation law

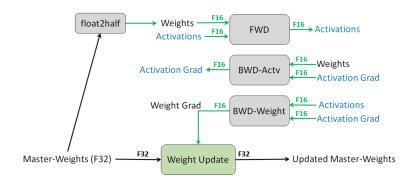
$$(-1)^{\mathrm{sign}} \times 2^{\mathrm{exponent}-127} \times (1 + \frac{\mathrm{fraction}}{2^{23}})$$

- Range: $[-3.40282 \times 10^{38}, +3.40282 \times 10^{38}]$
- Smallest positive number: 1.17549×10^{-38}
- FP 32 is much more powerful than FP 16; but takes more memory

Mixed precision training

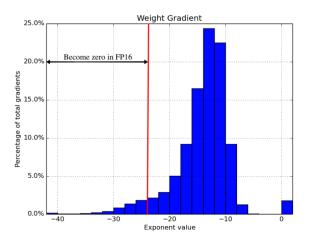
- When both FP32 and FP16 are used in training, we get Mixed precision training; see (micikevicius2017mixed)
- Save memory and computations without hurting performance
- Three key techniques:
 - FP32 weight copies
 - Loss scaling
 - Arithmetic precision

An FP32 weight copy is maintained and updated with gradient



- Reason I: maintain small values in the weight update
- Weight update = learning rate \times gradient; typically very small in late phase
- Values less than $2^{-24} \approx 5.96 \times 10^{-8}$ become 0 when using FP16
- About 5% values are less than 2^{-24}

FP32 weight copies



- Reason II: big value-to-update ratio
- The resolution in each period is shown as follows¹

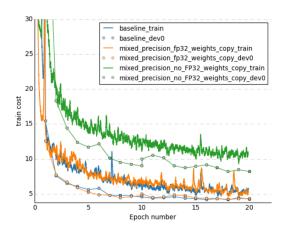
Min	Max	interval
0	2-13	2-24
2-13	2-12	2-23
2-12	2-11	2-22
2-11	2-10	2-21
2-10	2-9	2-20
2-9	2-8	2-19
2-8	2-7	2-18
2-7	2-6	2-17
2-6	2-5	2-16
2-5	2-4	2-15
2-4	1 8	2-14

1 8	1 4	2-13
1 4	1/2	2-12
1/2	1	2-11
1	2	2-10
2	4	2-9
4	8	2-8
8	16	2-7
16	32	2-6
32	64	2-5
64	128	2-4
128	256	1 8
256	512	1 4

512	1024	1/2
1024	2048	1
2048	4096	2
4096	8192	4
8192	16384	8
16384	32768	16
32768	65519	32
65519	00	∞

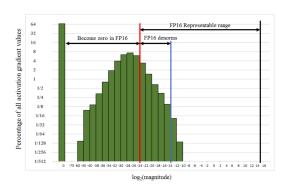
• If the value-to-update ratio is bigger than $2^{11}=2048$, it holds that ${\sf value+update=value}$

- The update has no influence on the value
- For reasons I and II, we maintain FP32 copies for both the weight and weight decay



Technique II - Loss scaling

- FP16 representation range [2⁻²⁴, 2¹⁵]
- The activation gradient is typically very small; most values are smaller than 2^{-24}



Technique II - Loss scaling

- Scale-up the loss value before the back-propagation
- Unscale the gradient after back-propagation but before the update

$$g(x) = \frac{\partial L}{\partial x} = \frac{1}{c} \frac{\partial (c \cdot L)}{\partial x}$$

- Effectively shift the gradient value to the FP representation range
- Tricky to choose the scale-up coefficient
- c = 8 typically works

Technique II - Loss scaling

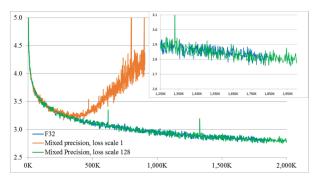
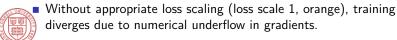


Figure: bigLSTM training perplexity.

 Mixed-precision training with loss scale 128 (green) closely matches full-precision (F32, blue) performance.



Technique III - Arithmetic precision

- Not as important as the above two techniques
- Three key computation steps: vector dot-products; reductions; point-wise operations
- It is suggested in (micikevicius2017mixed) that vector dot-products and reductions are read and written in FP16 but carried out in FP32
- Point-wise operations can be carried in FP16

Numerical studies

Table 1: ILSVRC12 classification top-1 accuracy.

Model	Baseline	Mixed Precision	Reference
AlexNet	56.77%	56.93%	(Krizhevsky et al., 2012)
VGG-D	65.40%	65.43%	(Simonyan and Zisserman, 2014)
GoogLeNet (Inception v1)	68.33%	68.43%	(Szegedy et al., 2015)
Inception v2	70.03%	70.02%	(Ioffe and Szegedy, 2015)
Inception v3	73.85%	74.13%	(Szegedy et al., 2016)
Resnet50	75.92%	76.04%	(He et al., 2016b)

Table 2: Detection network average mean precision.

Model	Baseline	MP without loss-scale	MP with loss-scale
Faster R-CNN	69.1%	68.6%	69.7%
Multibox SSD	76.9%	diverges	77.1%

- Across various architectures, mixed precision training achieves accuracy comparable to or slightly higher than full precision.
- For detection networks, **loss scaling is essential** without it, training may diverge (e.g., Multibox SSD).

Nvidia AMP²

AMP FOR PYTORCH

As simple as two lines of code

Wrap the model and optimizer

```
model, optimizer = amp.initialize(model, optimizer)
```

Apply automatic loss scaling and backpropagate with scaled loss

```
with amp.scaled_loss(loss, optimizer) as scaled_loss:
    scaled_loss.backward()
```


Nvidia AMP³: An example

```
import torch
import amp
model = ...
optimizer = ...
model, optimizer = amp.initialize(model, optimizer, opt_level="01")
for data, label in data_iter:
    out = model(data)
    loss = criterion(out, label)
    optimizer.zero_grad()
    with amp.scaled_loss(loss, optimizer) as scaled_loss:
        scaled_loss.backward()
optimizer.step()
```


Case study: Mixed-precision Adam

- Adam is an optimization method widely-used in training LLMs
- Adam states use $33\% \sim 75\%$ memories
- For example, Adam states use 11GB for GPT2 and 41GB for T5
- It is urgent to reduce the memory footprint caused by Adam states

Case study: 8-bit Adam optimizer

Recall the Adam optimizer

$$g_k = \nabla F(x_k; \xi_k)$$

$$m_k = \beta_1 m_{k-1} + (1 - \beta_1) g_k$$

$$s_k = \beta_2 s_{k-1} + (1 - \beta_2) g_k \odot g_k$$

$$x_{k+1} = x_k - \frac{\gamma}{\sqrt{s_k} + \epsilon} \odot m_k$$

- ullet 8-bit only supports $2^8=256$ values; much less than FP16 and FP32
- (dettmers2021) develops 8-bit Adam optimizer with block-wise quantization and dynamic quantization

8-bit optimizer procedure

- Quantize and store Adam states with 8 bit
- When updating and using state, dequantize it to FP32, update the weight, and quantize back to 8 bit
- 8-bit to 32-bit conversion element-by-element in registers; no additional temporary memory

Performance for common benchmarks

Optimizer	Task	Data	Model	Metric [†]	Time	Mem saved
Optimizer	Task	Data	Model		Time	Mem saveu
32-bit AdamW	GLUE	Multiple	RoBERTa-Large	88.9	_	Reference
32-bit AdamW	GLUE	Multiple	RoBERTa-Large	88.6	17h	$0.0\mathrm{GB}$
32-bit Adafactor	GLUE	Multiple	RoBERTa-Large	88.7	24h	1.3 GB
8-bit AdamW	GLUE	Multiple	RoBERTa-Large	88.7	15h	2.0 GB
32-bit Momentum	CLS	ImageNet-1k	ResNet-50	77.1	_	Reference
32-bit Momentum	CLS	ImageNet-1k	ResNet-50	77.1	118h	$0.0\mathrm{GB}$
8-bit Momentum	CLS	ImageNet-1k	ResNet-50	77.2	116 h	0.1 GB
32-bit Adam	MT	WMT'14+16	Transformer	29.3	_	Reference
32-bit Adam	MT	WMT'14+16	Transformer	29.0	126h	0.0 GB
32-bit Adafactor	MT	WMT'14+16	Transformer	29.0	127h	0.3 GB
8-bit Adam	MT	WMT'14+16	Transformer	29.1	115h	1.1 GB
32-bit Momentum	MoCo v2	ImageNet-1k	ResNet-50	67.5	_	Reference
32-bit Momentum	MoCo v2	ImageNet-1k	ResNet-50	67.3	30 days	0.0 GB
8-bit Momentum	MoCo v2	ImageNet-1k	ResNet-50	67.4	28 days	0.1 GB
32-bit Adam	LM	Multiple	Transformer-1.5B	9.0	308 days	0.0 GB
32-bit Adafactor	LM	Multiple	Transformer-1.5B	8.9	316 days	5.6 GB
8-bit Adam	LM	Multiple	Transformer-1.5B	9.0	297 days	8.5 GB
32-bit Adam	LM	Multiple	GPT3-Medium	10.62	795 days	0.0 GB
32-bit Adafactor	LM	Multiple	GPT3-Medium	10.68	816 days	1.5 GB
8-bit Adam	LM	Multiple	GPT3-Medium	10.62	761 days	1.7 GB
32-bit Adam	Masked-LM	Multiple	RoBERTa-Base	3.49	101 days	0.0 GB
32-bit Adafactor	Masked-LM	Multiple	RoBERTa-Base	3.59	112 days	0.7 GB
8-bit Adam	Masked-LM	Multiple	RoBERTa-Base	3.48	94 days	1.1 GB



Enable training larger models

	Largest finetunable Model (parameters)		
GPU size in GB	32-bit Adam	8-bit Adam	
6	RoBERTa-base (110M)	RoBERTa-large (355M)	
11	MT5-small (300M)	MT5-base (580M)	
24	MT5-base (580M)	MT5-large (1.2B)	
24	GPT-2-medium (762M)	GPT-2-large (1.5B)	

- Observation: Using 8-bit Adam enables fine-tuning of models up to three times larger on the same GPU memory.
- This highlights the scalability benefits of memory-efficient optimizers, allowing larger models to be trained on same hardware.

Recap and fine-tuning

- What we have talked about today?
 - ⇒ What is the number of parameters in GPTs?
 - ⇒ What is the memory complexity in GPTs
 - ⇒ How to perform memory-efficient training of GPTs?

Welcome anonymous survey!

