
Distributed Optimization for Machine Learning
Lecture 2 - Class Survey and Machine Learning Basics

Tianyi Chen

School of Electrical and Computer Engineering
Cornell Tech, Cornell University

August 27, 2025

ECE 5290/7290 & ORIE 5290 2 / 40

Table of Contents

Course survey statistics

Linear models for machine learning

ECE 5290/7290 & ORIE 5290 3 / 40

Active participation of course survey

Thank you for filling out the course survey!

99% participation!
It gives me a great snapshot of who is in the room with us today.

ECE 5290/7290 & ORIE 5290 4 / 40

Who you are: A profile of our class

We have diverse backgrounds, with many from ECE PhD and ECE
MEng, plus a strong showing from ORIE, CS and INFO.

ECE 5290/7290 & ORIE 5290 5 / 40

Your confidence with prerequisites

On average, the class feels most confident in Linear Algebra and Machine
Learning basics. It looks like Continuous Optimization is the area where
you’d most appreciate a review, which I will keep in mind.

ECE 5290/7290 & ORIE 5290 6 / 40

Your relevant courses

On average, the majority of class have taken Applied Machine Learning.
It looks like Optimization-related Course is less popular here.

ECE 5290/7290 & ORIE 5290 7 / 40

What you’re interested in

Tailor the course examples to what’s most relevant and exciting for you.

There’s a very strong interest in the state-of-the-art applications (like
LLMs and Federated Learning), balanced with a desire to learn both the
theoretical foundations and practical implementation skills.

ECE 5290/7290 & ORIE 5290 8 / 40

How you hope to apply this knowledge

It’s motivating to see your future goals, as I can connect the material
directly to your potential career paths.

Many of you are planning to apply this knowledge in an ML
Engineer/Data Science role or in Academic Research. The skills you’ll
learn are directly applicable to both industry and academia.

ECE 5290/7290 & ORIE 5290 9 / 40

What is you preferred the presentation format?

Indeed, the presentation format will follow this partition!

ECE 5290/7290 & ORIE 5290 10 / 40

Effective learning for a math-heavy class

Clear Explanations & Examples: Step-by-step explanations,
specific examples, case studies, and demonstrations.
Problem Solving & Exercises: Practice problems, problem sets,
and guided exercises with examples and solutions.
Practical Application: Hands-on practice, coding, projects,
implementation, and real-world demos.
Engaging and Interactive Learning: Class activities, discussions,
and student presentations to promote engagement.

ECE 5290/7290 & ORIE 5290 11 / 40

Any specific questions about the course?

If there a lot of overlapping with several ML courses in this semester?

Would l need background knowledge of hardware for this course?

What libraries in python and matlab that we should acquaint
ourselves with for optimization?

ECE 5290/7290 & ORIE 5290 12 / 40

Table of Contents

Course survey statistics

Linear models for machine learning

ECE 5290/7290 & ORIE 5290 13 / 40

Calibrate “optimization” from engineers and theorists

The engineer’s view
Goal: Get a high-performing model
quickly using real-world resources.

The theorist’s view
Goal: Understand the fundamental
performance of an algorithm.

ECE 5290/7290 & ORIE 5290 14 / 40

Going back to our “old-school” ML task

Machine learning (ML) learns pattern from historical data. Assume an
old-school ML task - model House Price based on Square Footage.

Square Footage Price ($1000s)
800 150
1200 250
1500 280
2000 350
2400 450
3000 500

Feature (x): Input variable for predictions (e.g., square footage).
Label (y): The ”answer” or output we want to predict (e.g., price).
Training Example: A single row of data, like (1200 sq. ft., $250k).

ECE 5290/7290 & ORIE 5290 15 / 40

Linear models for House Price predictions

Our ML task is to model House Price based on Square Footage.

Square Footage→ x
Price→ y

Base Price→ θ0

Price per SqFt→ θ1

Our Model:

hθ(x) = θ0 + θ1x
Sq. Ft.

Pr
ice

Price vs. Size

Linear model hθ(x) predicts the price via base price plus square footage.

ECE 5290/7290 & ORIE 5290 16 / 40

Multiple features for House Price predictions
Let’s make our price predictor more realistic by adding more features.

Size (sq. ft.) # Bedrooms Age (years) Price ($k)
1200 3 10 250
2000 4 5 350
800 2 25 150

Feature vector x and parameter vector θ now have multiple dimensions:

x =

 x1 (size)
x2 (beds)
x3 (age)

 , θ =


θ0
θ1
θ2
θ3


The model becomes a weighted sum of these features (Assuming x0 = 1):

hθ(x) = θ0 + θ1x1 + θ2x2 + θ3x3 = θTx

ECE 5290/7290 & ORIE 5290 17 / 40

Lines become hyperplanes

1,000
2,000

3,000

2

4

200

400

Size (Sq. Ft.)
of Bedrooms

Pr
ice

($
10

00
s)

Price vs. Size and Bedrooms

ECE 5290/7290 & ORIE 5290 18 / 40

Lines become hyperplanes

1,000

2,000

3,0002
4

200

400

Size (Sq. Ft.) # of Bedrooms

Pr
ice

($
10

00
s)

Price vs. Size and Bedrooms

ECE 5290/7290 & ORIE 5290 19 / 40

Training linear models for predictions

Our goal is to find the best parameter vector θ by minimizing the Mean
Squared Error (MSE) loss function.

L(θ) = 1
2m

m∑
i=1

(hθ(x(i))− y(i))2

where the model is a weighted sum of these features (Assuming x0 = 1):

hθ(x) = θ0 + θ1x1 + θ2x2 + θ3x3 = θTx

How do we minimize this? PyTorch Optimizer?

ECE 5290/7290 & ORIE 5290 20 / 40

Trial-and-Error?

How about we could try random guesses and then compare their loss
values? It works, but that’s inefficient.

θ1

θ2

Loss L(θ)

ECE 5290/7290 & ORIE 5290 21 / 40

Gradient Descent: Walking downhill

We use an algorithm that ”walks downhill” on the loss surface. The
direction of steepest descent is given by the gradient ∇L(θ).

θ1

θ2

Loss L(θ)

ECE 5290/7290 & ORIE 5290 22 / 40

An Important Property: Convexity

Geometric intuition:
A function is convex if the line
segment connecting any two
points on its graph lies on or
above the graph.
Think of it as a ”bowl” shape.

Good news for walk downhill:
A convex function has no ”bad”
local minima, and we are
guaranteed to find the single
best solution!

Convex

Non-Convex

ECE 5290/7290 & ORIE 5290 23 / 40

Math Review: The Derivative

The derivative of a function
f(x), written as f′(x), measures
its instantaneous rate of
change or slope at a point.

It tells us how the output of the
function will change if we make
a tiny change to its input.

Example: For f(x) = x2, the
derivative is f′(x) = 2x.

Slope at x = 1 is f′(1) = 2

x

f(x)

ECE 5290/7290 & ORIE 5290 24 / 40

Math Review: The Second Derivative

The second derivative, written as f′′(x),
is the derivative of the first derivative.

Measure rate of change of the slope.
Or, the function’s curvature.

If f′′(x) > 0, the slope is increasing,
and the function is curving upwards
(convex, like a bowl).
If f′′(x) < 0, the slope is decreasing,
and the function is curving downwards
(concave, like a dome).

f′(−1) = −2 f′(1) = 2

x

f(x)

Figure: For f(x) = x2, the slope
increases from negative to positive.
As the slope is always increasing,
f′′(x) > 0, f(x) curves upwards.

How about the vector-input function?

ECE 5290/7290 & ORIE 5290 25 / 40

Math Review: Vectors & Matrices

Vectors
An ordered list of numbers.
In ML, represents a single data
point (feature vector) or the
model’s parameters.

Feature Vector Parameter Vector

x =


x1
x2
...

xd

 , θ =


θ0
θ1
...
θd



Matrices
A rectangular array of numbers.
For now, represents the entire
dataset, where each row is a
training example.

Dataset Matrix

X =


← (x(1))T →
← (x(2))T →

...
← (x(m))T →



ECE 5290/7290 & ORIE 5290 26 / 40

Math Review: Partial Derivatives & The Gradient

Partial Derivatives
For a function with multiple inputs, a partial derivative (∂f

∂xj
) is the

derivative with respect to one variable, treating others as constants.
Example: For f(x, y) = 3x2 + 2y:

∂f
∂x = 6x, ∂f

∂y = 2

The Gradient (∇f)
The gradient is a vector containing all of the partial derivatives

∇f =
(
∂f/∂x
∂f/∂y

)
=

(
6x
2

)
Key Insight: The gradient vector ∇f always points in the direction
of the steepest ascent of the function.

ECE 5290/7290 & ORIE 5290 27 / 40

Math Review: Jacobian and Hessian

1. The Jacobian Matrix (J)
The matrix of all first-order partial derivatives of a vector-valued
function (f : Rn → Rm). It generalizes the gradient.

Example: For f(x, y) =
(

x2y
5x + sin(y)

)
, the Jacobian is:

J =

(
∂f1/∂x ∂f1/∂y
∂f2/∂x ∂f2/∂y

)
=

(
2xy x2

5 cos(y)

)
2. The Hessian Matrix (H or ∇2f) - Jacobian of the gradient

The matrix of all second-order partial derivatives of a scalar-valued
function (f : Rn → R) - the multi-variable version of 2nd derivative.
Key Insight: The Hessian describes the local curvature of a
function. If the function looks like a bowl, a dome, or a saddle point.

ECE 5290/7290 & ORIE 5290 28 / 40

Math Review: Positive Semi-Definite (PSD) Matrices

This is a crucial property of a symmetric matrix (like the Hessian) that
formalizes the “bowl shape.”

Definition: A matrix H is Positive Semi-Definite (PSD) if for any
non-zero vector v, the following holds:

vTHv ≥ 0

Intuition: This means that from any point on a function’s surface, the
curvature is never downwards in any direction. Either flat or curving up.

Connection to Convexity
If the Hessian matrix of a function is Positive Semi-Definite everywhere,
then the function is convex.

ECE 5290/7290 & ORIE 5290 29 / 40

Is the linear regression loss convex?

For a twice-differentiable function f(θ), it is convex if and only if its
Hessian matrix ∇2f(θ) is positive semi-definite (PSD).

1. Simplify: Only need to show convexity for a single data point’s loss.

Li(θ) = (θTx− y)2

2. Calculate the Gradient and the Hessian:

∇Li(θ) = 2(θTx− y)x; ∇2Li(θ) = 2xxT

3. Check if the Hessian is PSD: For any vector v ∈ Rd:

vT(2xxT)v = 2(vTx)(xTv) = 2(vTx)2 ≥ 0

Since (vTx)2 is a squared number, it is always non-negative. Therefore,
the Hessian is positive semi-definite, and the MSE loss is convex.

ECE 5290/7290 & ORIE 5290 30 / 40

Training Step 1: The Gradient

For our linear model with MSE loss, the gradient component for a single
parameter θj is:

∂

∂θj
L(θ) = 1

m

m∑
i=1

(hθ(x(i))− y(i))x(i)j

This tells us how much the error changes with respect to a small change

in that specific parameter (e.g., the weight for ’size’ or ’age’).

ECE 5290/7290 & ORIE 5290 31 / 40

Training Step 2: The Update Rule

Gradient Descent works by taking small, iterative steps. In each step, we
update every parameter θj using the following rule:

θj := θj − α
∂

∂θj
L(θ)

θj is the parameter’s current value.
α is learning rate, a small number (e.g., 0.01) controls the stepsize.
∂
∂θj

L(θ) is the gradient component on the previous slide.

ECE 5290/7290 & ORIE 5290 32 / 40

The Full Gradient Descent Algorithm

The complete Gradient Descent algorithm is:
1. Initialize parameters θ (e.g., to all zeros).
2. Repeat for many iterations:

• Compute the gradient ∂
∂θj

L(θ) = 1
m
∑m

i=1(hθ(x(i))− y(i))x(i)j
• Update parameter θj using the rule:

θj := θj − α
1
m

m∑
i=1

(hθ(x(i))− y(i))x(i)j

• Repeat this for all parameters (θ0, θ1, θ2, θ3) simultaneously.
3. Stop until some stopping criteria are satisfied.

ECE 5290/7290 & ORIE 5290 33 / 40

Gradient Descent: Iteration 1 (Setup)

Size (sq. ft.) # Bedrooms Age (years) Price ($k)
x1 x2 x3 y

1200 3 10 250
2000 4 5 350
800 2 25 150

1. Initial State:
Learning Rate α = 10−7 (a tiny number due to large feature values).
Initial Parameters θ(0) = (0, 0, 0, 0).

ECE 5290/7290 & ORIE 5290 34 / 40

Gradient Descent: Iteration 1 (Setup)

Size (sq. ft.) # Bedrooms Age (years) Price ($k)
x1 x2 x3 y

1200 3 10 250
2000 4 5 350
800 2 25 150

2. Calculate predictions and errors for all training examples:
Since our initial parameters are all zero, the first prediction is hθ(x) = 0.

House Prediction (h) Actual (y) Error (h− y)
1 0 250 -250
2 0 350 -350
3 0 150 -150

Now we use these errors to compute the gradient for the entire batch.

ECE 5290/7290 & ORIE 5290 35 / 40

Gradient Descent: Iteration 1 (Calculating the gradient)

3. Calculate the gradient via the formula 1
m
∑

(error(i)) · x(i)j for each j.

For θ0 (bias, x0 = 1):
1
3 [(−250 · 1) + (−350 · 1) + (−150 · 1)] = −250

For θ1 (size, x1):
1
3 [(−250 · 1200) + (−350 · 2000) + (−150 · 800)] = −373, 333

For θ2 (beds, x2):
1
3 [(−250 · 3) + (−350 · 4) + (−150 · 2)] = −817

For θ3 (age, x3):
1
3 [(−250 · 10) + (−350 · 5) + (−150 · 25)] = −2, 667

The full gradient vector is ∇L(θ(0)) = (−250,−373333,−817,−2667).

ECE 5290/7290 & ORIE 5290 36 / 40

Gradient Descent: Iteration 1 (The update)

4. Update the parameters using the rule θ(new) = θ(old) − α∇L(θ(old)).


θ0
θ1
θ2
θ3


(1)

=


0
0
0
0

− (10−7) ·


−250
−373, 333
−817
−2, 667


The new parameter vector after one step is:

θ(1) =


0.000025
0.037333
0.000082
0.000267


For Iteration 2, we would repeat this entire process starting with θ(1).

ECE 5290/7290 & ORIE 5290 37 / 40

Gradient Descent: Iteration 2 (New predictions & loss)

1. Starting Point: Begin with the parameters from the first iteration:

θ(1) = (0.000025, 0.0373, 0.000082, 0.000267)

2. Calculate new predictions and errors:

House Prediction (h) Actual (y) Error (h− y)
1 (1200 sqft) 44.80 250 -205.20
2 (2000 sqft) 74.67 350 -275.33
3 (800 sqft) 29.87 150 -120.13

3. Calculate the new loss: Using the new errors, the MSE is:

L(θ(1)) =
1

2 · 3
(
(−205.20)2 + (−275.33)2 + (−120.13)2) ≈ 22, 057

Significant Improvement! Loss at Iteration 0: L(θ(0)) = 34, 583

ECE 5290/7290 & ORIE 5290 38 / 40

Gradient Descent: Iteration 2 (New gradient & update)

4. Calculate the new gradient using the errors from the previous step.
The new gradient is ∇L(θ(1)) = (−200,−297, 640,−665,−2, 125).

(Note: gradients are smaller than before, (as expected?) as the error is lower).

5. Perform the Second Update to get θ(2) = θ(1) − α∇L(θ(1)):

θ(2) =


θ0
θ1
θ2
θ3


(2)

=


0.000025
0.0373

0.000082
0.000267

− (10−7) ·


−200
−297, 640
−665
−2, 125

 =


0.000045
0.0671

0.000148
0.000479


The model continues this process, with each step making a smaller, more
refined adjustment to the parameters until the loss converges.

ECE 5290/7290 & ORIE 5290 39 / 40

The quality of a converged model

After running hundreds of
iterations, the gradient
descent algorithm converges.

Final Learned Parameters (θ):
θ0 (Base Price): 250.0
θ1 (for Size): 84.3
θ2 (for Beds): 21.2
θ3 (for Age): −22.9

Final loss (MSE): 73.55

Final Model Predictions:

Actual Predicted Error
$250k $257k -7k
$350k $343k +7k
$150k $150k 0

Recap and fine-tuning

What we have talked about today?
⇒ How to solve linear regression via gradient descent?
⇒ How to extended to nonlinear regression?
⇒ How about other loss functions?

Welcome anonymous survey!

	Course survey statistics
	Linear models for machine learning

