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Active participation of course survey

Thank you for filling out the course survey!

99% participation!

It gives me a great snapshot of who is in the room with us today.

ECE 5290/7290 & ORIE 5290

3/40



Who you are: A profile of our class

What is your primary degree program?
44 responses

@ ECE MEng

@ ECE PhD

@ ORIE MEng

@ Other (CS, INFO, LAW, etc)

We have diverse backgrounds, with many from ECE PhD and ECE
MEng, plus a strong showing from ORIE, CS and INFO.
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Your confidence with prerequisites

Please rate your confidence level with the following prerequisites:

I 1(Needarefresher) [l 2 W3 M4 [ 5 (Very confident)

Linear algebra Continuous optimization Python for scientific Machine learning basics
computing

On average, the class feels most confident in Linear Algebra and Machine
Learning basics. It looks like Continuous Optimization is the area where
you'd most appreciate a review, which | will keep in mind.
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Your relevant courses

Have you previously taken a full, dedicated course in any of the following? (Select all that apply)
44 responses

Applied Machine Learning or

related 29.(65.9%)

Machine Learning Systems or
related

Optimization Methods or related 14 (31.8%)

On average, the majority of class have taken Applied Machine Learning.
It looks like Optimization-related Course is less popular here.
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What you're interested in

Tailor the course examples to what's most relevant and exciting for you.

Which aspects of the course are you most interested in?
44 responses

@ The theoretical foundations (e.g.,
intuitions, convergence proofs)

@ The practical implementation skills (e.g.,
coding algorithms from scratch)

@ The state-of-the-art applications (e.g.,
LLMs, Federated Learning)

There's a very strong interest in the state-of-the-art applications (like
LLMs and Federated Learning), balanced with a desire to learn both the
theoretical foundations and practical implementation skills.
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How you hope to apply this knowledge

It's motivating to see your future goals, as | can connect the material
directly to your potential career paths.

How do you hope to apply the knowledge from this course in the future? (Select all that apply)
44 responses

Academic Research (PhD thesis,

= o
MS thesis, publications) 17 (38.6%)

ML Engineer / Data Science Role.

Personal Interest / Undecided 15 (34.1%)

0 10 20 30 40

Many of you are planning to apply this knowledge in an ML
Engineer/Data Science role or in Academic Research. The skills you'll
learn are directly applicable to both industry and academia.
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What is you preferred the presentation format?

What is the format you prefer for teaching?
44 responses

@ Slides presentation
@ Hand-written notes
@ Programming demo

Indeed, the presentation format will follow this partition!
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Effective learning for a math-heavy class

Clear Explanations & Examples: Step-by-step explanations,
specific examples, case studies, and demonstrations.

Problem Solving & Exercises: Practice problems, problem sets,
and guided exercises with examples and solutions.

Practical Application: Hands-on practice, coding, projects,
implementation, and real-world demos.

Engaging and Interactive Learning: Class activities, discussions,
and student presentations to promote engagement.
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Any specific questions about the course?

m If there a lot of overlapping with several ML courses in this semester?
m Would | need background knowledge of hardware for this course?

m What libraries in python and matlab that we should acquaint
ourselves with for optimization?
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Calibrate “optimization” from

The engineer’s view

Goal: Get a high-performing model
quickly using real-world resources.

m(net.parameters(), lr

, requires_
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engineers and theorists

The theorist’s view

Goal: Understand the fundamental
performance of an algorithm.

1. Lower bound for Dj, with a Bregman term.
For convex L-smooth f, the Bregman divergence obeys

iHVI(r')fo(y)H‘ < (@) - fy) - (Vi)sz -9}

(see the inequality used repeatediy in §3, Eq. (3) / Theorem 215 of Nesterov as cited there). Applying it

WithZ = @y, y = 41 and noting T, — Zi i gives

oo L nae
Dic 2 niger, o) + rllAl. (A)

o
2. Upper bound for Dy ., by convexity.
By convexity, f(z) — f(u/
NGk 1,

), SOWIth T = Tk41, Y = Thsz and Thi1 — Thia =

Dy < nllgenl?. (B)
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Going back to our “old-school” ML task

Machine learning (ML) learns pattern from historical data. Assume an
old-school ML task - model House Price based on Square Footage.

Square Footage

Price ($1000s)

800
1200
1500
2000
2400
3000

150
250
280
350
450
500

m Feature (x): Input variable for predictions (e.g., square footage).
m Label (y): The "answer” or output we want to predict (e.g., price).
m Training Example: A single row of data, like (1200 sq. ft., $250k).

Y
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Linear models for House Price predictions

Our ML task is to model House Price based on Square Footage.

Price vs. Size

Square Footage — x
Price — y

Base Price — 6q
Price per SqFt — 6,

Price

Our Model:

hg(X) =0y + O1x

Sq. Ft.

Linear model hy(x) predicts the price via base price plus square footage.

)
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Multiple features for House Price predictions

Let’s make our price predictor more realistic by adding more features.

Size (sq. ft.) # Bedrooms Age (years) Price ($k)

1200 3 10 250
2000 4 5 350
800 2 25 150

Feature vector x and parameter vector 8 now have multiple dimensions:

x1 (size) ZO
x= | x (beds) |, 6= 91
s (289 h

The model becomes a weighted sum of these features (Assuming xo = 1):

©)

ho(x) = 0o + 0131 + 032 + O3x3 = 0 7x
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Lines become hyperplanes

Price vs. Size and Bedrooms

400

Price ($1000s)

200 ~

1,000
4

# of Bedrooms

2,000

3,000

Size (Sq. Ft.)
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Lines become hyperplanes

Price vs. Size and Bedrooms

400

Price ($1000s)

2,000

3,000

Size (Sq. Ft.) # of Bedrooms
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Training linear models for predictions

Our goal is to find the best parameter vector @ by minimizing the Mean
Squared Error (MSE) loss function.

1 & . .
L(O) = — ho(x(D) — D)2
(0)= 57y (00x%) )
where the model is a weighted sum of these features (Assuming xp = 1):

he(x) = b + O1x1 + Oax2 + O3x3 = 6"x

How do we minimize this? PyTorch Optimizer?
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Trial-and-Error?

How about we could try random guesses and then compare their loss
values? It works, but that's inefficient.

ECE 5290/7290 & ORIE 5290 20/40



Gradient Descent: Walking downhill

We use an algorithm that "walks downhill” on the loss surface. The
direction of steepest descent is given by the gradient VL(8).
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An Important Property: Convexity

Geometric intuition:

Convex

m A function is convex if the line
segment connecting any two
points on its graph lies on or
above the graph.

m Think of it as a "bowl” shape.

Good news for walk downhill:

Non-Convex

m A convex function has no "bad”
local minima, and we are
guaranteed to find the single
best solution!
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Math Review: The Derivative

m The derivative of a function
f(x), written as f(x), measures
its instantaneous rate of
change or slope at a point.

m It tells us how the output of the
function will change if we make
a tiny change to its input.

fx)

= Example: For f(x) = x2, the
derivative is f(x) = 2x.

)
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Math Review: The Second Derivative

m The second derivative, written as f/(x),
. . . . . . flx)
is the derivative of the first derivative.

m Measure rate of change of the slope.
Or, the function's curvature.

m If f/(x) > 0, the slope is increasing, X
and the function is curving upwards
(convex, like a bowl).

m If 7/(x) < 0, the slope is decreasing, Figure: For f{x) = XZ_’ the slope
and the function is curving downwards ~ ncreases from negative to positive.

(Concave like a dome) As the slope is always increasing,
' ‘ f'(x) > 0, f{x) curves upwards.

How about the vector-input function?
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Math Review: Vectors & Matrices

Vectors
m An ordered list of numbers.
m In ML, represents a single data
point (feature vector) or the
model’s parameters.

Feature Vector = Parameter Vector

X1 o
X2 91
x=1.1, 6=1.
Xd 04

Matrices
m A rectangular array of numbers.

m For now, represents the entire
dataset, where each row is a
training example.

Dataset Matrix

— (xHT
— (xHT

— (xmMT -
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Math Review: Partial Derivatives & The Gradient

Partial Derivatives

m For a function with multiple inputs, a partial derivative (%) is the
J

derivative with respect to one variable, treating others as constants.

m Example: For flx,y) = 3x% + 2y

of of

— =0 — =2
ax dy

The Gradient (V1)
m The gradient is a vector containing all of the partial derivatives

- (085

m Key Insight: The gradient vector Vf always points in the direction

of the steepest ascent of the function.
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Math Review: Jacobian and Hessian

1. The Jacobian Matrix (J)

m The matrix of all first-order partial derivatives of a vector-valued
function (f: R” — R™). It generalizes the gradient.

m Example: For flx,y) = ( <y

Bx 4 sin(y))’ the Jacobian is:
J— (81‘1/8X 8f1/5'y) _ <2xy X2 )

0f/0x 0h/dy) — \ 5 cos(y)

2. The Hessian Matrix (H or V2f) - Jacobian of the gradient

m The matrix of all second-order partial derivatives of a scalar-valued
function (f: R” — R) - the multi-variable version of 2nd derivative.

m Key Insight: The Hessian describes the local curvature of a

function. If the function looks like a bowl, a dome, or a saddle point.

S
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Math Review: Positive Semi-Definite (PSD) Matrices

This is a crucial property of a symmetric matrix (like the Hessian) that
formalizes the “bowl shape.”

Definition: A matrix H is Positive Semi-Definite (PSD) if for any
non-zero vector v, the following holds:

v'Hv >0

Intuition: This means that from any point on a function's surface, the
curvature is never downwards in any direction. Either flat or curving up.

Connection to Convexity

If the Hessian matrix of a function is Positive Semi-Definite everywhere,
then the function is convex.
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Is the linear regression loss convex?
For a twice-differentiable function @), it is convex if and only if its
Hessian matrix V2f(0) is positive semi-definite (PSD).
1. Simplify: Only need to show convexity for a single data point’s loss.
Li(0) = (87x — y)°
2. Calculate the Gradient and the Hessian:
VL(6) =2(0"x — y)x; V2Li(0) = 2xx"
3. Check if the Hessian is PSD: For any vector v € RY:
vi(2xx"v =2(v x)(x"v) =2(v'x)* > 0

Since (vTx)2 is a squared number, it is always non-negative. Therefore,

Ihe Hessian is positive semi-definite, and the MSE loss is convex.
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Training Step 1: The Gradient

For our linear model with MSE loss, the gradient component for a single
parameter §; is:

0 1 . o
—_ - = (Y — D))
53,10) = 1 (o) )

This tells us how much the error changes with respect to a small change

in that specific parameter (e.g., the weight for 'size’ or 'age’).
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Training Step 2: The Update Rule

Gradient Descent works by taking small, iterative steps. In each step, we
update every parameter 6; using the following rule:

0
0j:=0;—a--L(0
J J 801 ( )
m 0; is the parameter's current value.
m « is learning rate, a small number (e.g., 0.01) controls the stepsize.

m %L(G) is the gradient component on the previous slide.
J
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The Full Gradient Descent Algorithm

The complete Gradient Descent algorithm is:
1. Initialize parameters @ (e.g., to all zeros).
2. Repeat for many iterations:
Compute the gradient c,}%/_L(O) = L1357 (he(x) — y("))xj(.a
Update parameter 6; using the rule:

1 & h iy (i
0:=6;—a ;(hg(x()) — yMd?

Repeat this for all parameters (6o, 61, 62, 03) simultaneously.

3. Stop until some stopping criteria are satisfied.

)
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Gradient Descent: Iteration 1 (Setup)

Size (sq. ft.) # Bedrooms Age (years) Price ($k)

X1 X2 X3 y
1200 3 10 250
2000 4 5 350
800 2 25 150

1. Initial State:

m Learning Rate o = 10~7 (a tiny number due to large feature values).

m Initial Parameters 8(®) = (0,0,0,0).
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Gradient Descent: Iteration 1 (Setup)

Size (sq. ft.) # Bedrooms Age (years) Price ($k)

X1 X2 X3 y
1200 3 10 250

2000 4 5 350
800 2 25 150

2. Calculate predictions and errors for all training examples:
Since our initial parameters are all zero, the first prediction is hg(x) = 0.

House Prediction (h) Actual (y) Error (h—y)

1 0 250 -250
2 0 350 -350
3 0 150 -150

W we use these errors to compute the gradient for the entire batch.
ECE 5290/7290 & ORIE 5290
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Gradient Descent: Iteration 1 (Calculating the gradient)

3. Calculate the gradient via the formula 1 3 (error(?) -><J(-i) for each j.

m For 6y (bias, xp = 1):
1[(—250 - 1) + (350 - 1) + (—150 - 1)] = —250

m For 0; (size, x1):
1[(—250 - 1200) + (—350 - 2000) + (—150 - 800)] = —373,333

m For 0, (beds, x;):
1[(—250-3) + (—350 - 4) + (—150 - 2)] = —817

m For 05 (age, x3):
1[(—250-10) + (—350 - 5) + (—150 - 25)] = —2, 667

The full gradient vector is VL(0(®)) = (—250, —373333, —817, —2667).
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Gradient Descent: Iteration 1 (The update)

4. Update the parameters using the rule (") = g(°'d) _ 47 (9(!d)).

A —250
| |o | —373,333
0, —lo| (1077)- —817
05 0 — 2,667

The new parameter vector after one step is:

0.000025
o) _ | 0037333
0.000082
0.000267

For lteration 2, we would repeat this entire process starting with (1),
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Gradient Descent: Iteration 2 (New predictions & loss)

1. Starting Point: Begin with the parameters from the first iteration:
6™ = (0.000025, 0.0373, 0.000082, 0.000267)

2. Calculate new predictions and errors:

House Prediction (h) Actual (y) Error (h—y)

1 (1200 sqft) 44.80 250 -205.20
2 (2000 sqft) 74.67 350 -275.33
3 (800 sqft) 29.87 150 -120.13

3. Calculate the new loss: Using the new errors, the MSE is:

1
L(OW) = 53 ((—205.20)% 4 (—275.33)? + (—120.13)?) ~ 22,057
Significant Improvement! Loss at Iteration 0: L(6©) = 34,583
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Gradient Descent: Iteration 2 (New gradient & update)

4. Calculate the new gradient using the errors from the previous step.
The new gradient is VL(0()) = (—200, —297, 640, —665, —2, 125).

(Note: gradients are smaller than before, (as expected?) as the error is lower).

5. Perform the Second Update to get 82 = 6(1) — oV L(0W):

0\ @ /0.000025 ~200 0.000045
oo [0 [ 0033 | o0 [-207.600| _ | 00671
0, 0.000082 —665 0.000148
05 0.000267 —2.125 0.000479

The model continues this process, with each step making a smaller, more
refined adjustment to the parameters until the loss converges.

©)
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The quality of a converged model

Visualizing Gradient Descent: Loss vs. Iterations

15000

[ 160 260 30 00 500
rrrrrrrrrrrrr

Final Learned Parameters (0):
m 0y (Base Price): 250.0
m 01 (for Size): 84.3
m 6, (for Beds): 21.2
m 03 (for Age): —22.9

Final loss (MSE): 73.55

After running hundreds of
iterations, the gradient

descent algorithm converges.

Final Model Predictions:

Actual Predicted Error

$250k $257k -7k
$350k $343k +7k
$150k $150k 0
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Recap and fine-tuning

m What we have talked about today?
= How to solve linear regression via gradient descent?
= How to extended to nonlinear regression?

= How about other loss functions?

y
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