Distributed Optimization for Machine Learning

Lecture 19 - Transformers: Architecture, Parameters, and Memories

Tianyi Chen

School of Electrical and Computer Engineering Cornell Tech, Cornell University

November 10, 2025

Course project summary: Major themes

Top 4 Focus areas:

- 1. LLM Parameter-Efficient Fine-Tuning (PEFT)
- 2. Federated/decentralized optimization
- 3. System & protocol robustness
- 4. Specialized topics (e.g., Quantum FL, ADMM)
 - Dominant topic: Low-Rank Adaptation (LoRA)
 - Why full fine-tuning is impractical and how LoRA addresses it.
 - **Related focus:** Quantization in LoRA; memory-latency tradeoffs.

Theme 2: Federated and decentralized optimization

Core challenge: Convergence, communication, and heterogeneity in distributed learning.

- Focus: Adaptive consensus under data heterogeneity.
- Algorithms: Comparing Local SGD vs. Mini-Batch SGD.
- Theory: Invertibility and injectivity in distributed solutions.

- Focus: Hierarchical FL and parallelism.
- Adaptation: Adaptive and learned aggregation under non-IID data.
- Application (Research):
 Federated transfer learning for drug discovery.
- **System:** Privacy-preserving FL.

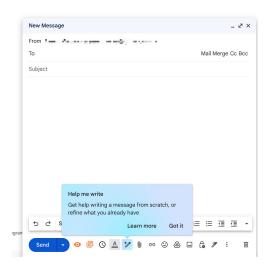
Decentralized LLM Projects (Research/Educational): Theoretical and practical foundations of distributed optimization for LLMs.

Themes 3 & 4: Specialized topics

- Byzantine resilience:
 Detection of Traitors in distributed optimization.
- System reliability: Making distributed training reproducible via consensus protocols.
- Optimization tools: Understanding ZeRO (Zero Redundancy Optimizer).
- **LLM serving:** Queueing for efficient LLM serving.

- Quantum FL: Introduction to quantum federated learning.
- ADMM/GNNs: Using ADMM for distributed training of graph neural networks.
- Hardware (Research): In-memory training on analog devices.
- Multi-objective (Research):
 Tuning LLMs to balance criteria using parallel implementation.

Generative AI in everyday life



Many of the tasks involve sequence generation

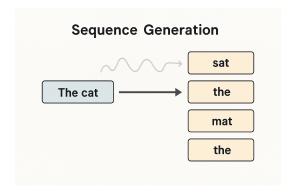


Table of Contents

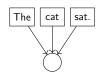
From sequence models to attention

Transformers and computation flow

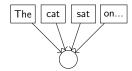
Memory and computation of GPT

Motivations of sequential modeling

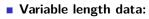
Consider the sequential data and why standard MLPs are a poor fit.



Requires 3 inputs



Requires a different architecture!



MLPs require a fixed-size input vector, but sequential data like sentences can be any length.

No sense of order:

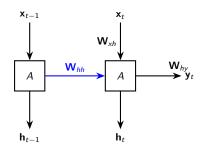
It has no built-in notion that "cat" comes after "The," losing crucial contextual information.

No parameter sharing:

The weights learned for the first word are separate from the weights for the third word.

Revisit recurrent neural networks (RNNs)

RNNs process sequences by maintaining a hidden state \mathbf{h}_t that acts as a memory, passed from one time step to the next.



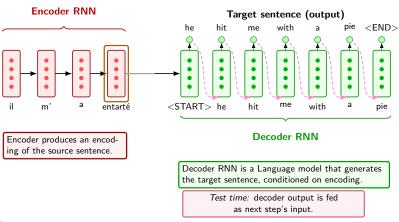
Model $h_{\theta}(\mathbf{x}_1, \dots, \mathbf{x}_T)$: recurrent update for hidden state \mathbf{h}_t , output \mathbf{y}_t :

$$egin{aligned} \mathbf{h}_t &= \sigma(\mathbf{W}_{hh}\mathbf{h}_{t-1} + \mathbf{W}_{xh}\mathbf{x}_t + \mathbf{b}_h) \ \mathbf{y}_t &= \sigma(\mathbf{W}_{hy}\mathbf{h}_t + \mathbf{b}_y) \end{aligned}$$

Parameters θ : The shared $\{\mathbf{W}_{hh}, \mathbf{W}_{xh}, \mathbf{W}_{hv}\}$ and biases at every step.

Sequence-to-sequence (Seq2Seq) model

Seq2Seq first appears in Machine Translation (MT)



Sequence-to-sequence (Seq2Seq) is versatile!

Seq2Seq is useful for more than just MT today! Many genAl tasks

can be phrased as sequence-to-sequence:

- **Summarization:** Long text \rightarrow short text (summary).
- Dialogue: Previous utterances → next utterance (response).
- **Parsing:** Input text \rightarrow output parse as sequence (structured data).
- Code generation: Natural language → Python code (or other programming language).

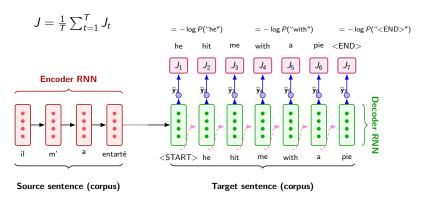
Seq2Seq as a conditional language model

- The sequence-to-sequence model is an example of a Conditional Language Model
 - Language Model because the decoder is predicting the next word of the target sentence y
 - Conditional because its predictions are also conditioned on the source sentence x
- NMT (Neural Machine Translation) directly calculates the probability of the next word:

$$P(y_T|y_1,\ldots,y_{T-1},\mathbf{x})$$

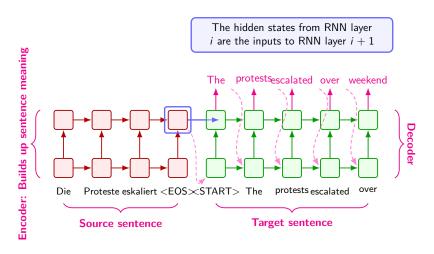
Probability of next target word, given target words so far and source sentence x

Training a neural machine translation system



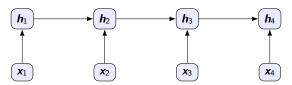
Seq2seq is optimized as a single system: backpropagation flows end-to-end across encoder and decoder.

Multi-layer deep encoder-decoder machine translation net



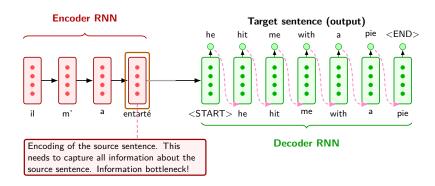
The evolution of sequence models

- RNNs and Long Short-Term Memory networks (LSTMs): process tokens left-to-right; hidden state carries context.
- Strengths:
 - Naturally handle variable-length sequences.
 - Good inductive bias for local, temporal dependencies.
- Limitations:
 - The last block captures all the information about the source.
 - Long-range dependencies degrade (vanishing/exploding gradients).
 - Sequential dependency \Rightarrow poor parallelism on modern hardware.



Hidden state must flow sequentially \Rightarrow limited parallelism.

The information bottleneck problem in RNNs

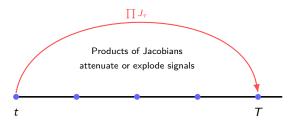


Why long-range fades in RNNs?

Backprop through time multiplies many Jacobians:

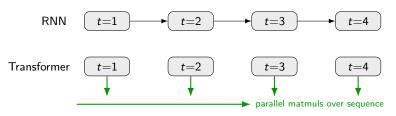
$$\frac{\partial \boldsymbol{h}_{T}}{\partial \boldsymbol{h}_{t}} = \prod_{\tau=t}^{T-1} \frac{\partial \boldsymbol{h}_{\tau+1}}{\partial \boldsymbol{h}_{\tau}}.$$

■ Eigenvalues $< 1 \Rightarrow vanishing$; $> 1 \Rightarrow exploding$.



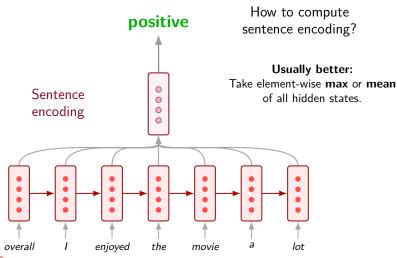
Parallelism bottleneck in RNNs

- Token t must wait for t-1 to finish; no full-sequence parallelism.
- Modern computer accelerators favor wide, batched matrix operations; serial chains underutilize compute.



Transformers replace serial recurrence with parallel attention.

The starting point: mean-pooling for RNNs

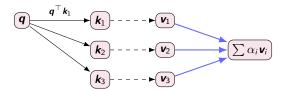


Attention as weighted averaging with "learned" weights

- Each query q looks up relevant information in (key, value) $\{(k_i, v_i)\}$.
- Relevance via similarity $s_i = \boldsymbol{q}^{\top} \boldsymbol{k}_i$; aggregate values by soft weights.

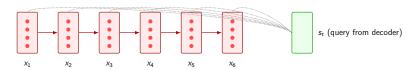
$$\alpha_i = \operatorname{softmax}\left(\frac{\boldsymbol{q}^{\top}\boldsymbol{k}_i}{\sqrt{d_k}}\right), \quad \operatorname{Attn}(\boldsymbol{q}, K, V) = \sum_i \alpha_i \, \boldsymbol{v}_i.$$

Scale $1/\sqrt{d_k}$ stabilizes dot products as d_k grows.



Sequence-to-sequence with attention

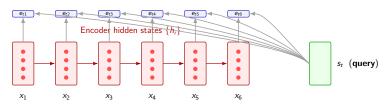
Encoder hidden states $\{h_i\}$



We have encoder vectors $\{h_i\}$ and the current decoder state s_t (query).

Computing attention scores

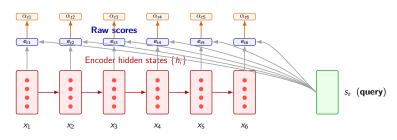
Raw scores



 $e_{ti} = score(s_t, h_i)$ (dot, general, or additive/Bahdanau)

From raw scores to attention distribution

Attention distribution (softmax)

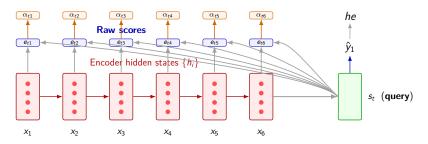


$$e_{ti} = \text{score}(s_t, h_i), \quad \alpha_{ti} = \text{softmax}(e_{ti}) = \frac{\exp(e_{ti})}{\sum_j \exp(e_{tj})}$$

- Use the attention distribution to weight the encoder hidden states.
- The attention output mostly contains information from the hidden states that received high attention.

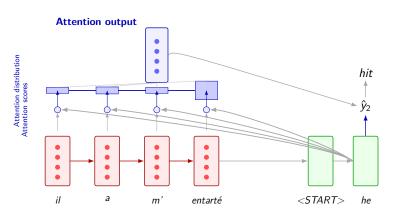
From attention distribution to next-token prediction

Attention distribution (softmax)



Concatenate attention output with decoder hidden state, then use to compute \hat{y}_1 as before.

From attention distribution to next-token prediction



Sometimes we take the attention output from the previous step, and also feed it into the decoder (along with the usual decoder input).

Computing attention step-by-step

- We have encoder hidden states $h_1, \ldots, h_N \in \mathbb{R}^h$
- lacksquare On timestep t, we have decoder hidden state $s_t \in \mathbb{R}^h$
- We get the attention scores e^t for this step:

$$\mathbf{e}^t = [s_t^ op h_1, \dots, s_t^ op h_N] \in \mathbb{R}^N$$
 There are multiple ways to do this

• We take softmax to get the attention distribution α^t for this step (this is a probability distribution and sums to 1)

$$\alpha^t = \operatorname{softmax}(e^t) \in \mathbb{R}^N$$

- Use $lpha^t$ to get the attention output: $a_t = \sum_{i=1}^N lpha_i^t h_i \in \mathbb{R}^h$
- Concatenate the attention and the decoder hidden state to proceed:

$$[a_t; s_t] \in \mathbb{R}^{2h}$$

There are several attention variants

Dot-product attention: (assume $d_1 = d_2$ - the version we saw earlier)

$$e_i = s^{\top} h_i \in \mathbb{R}$$

■ Multiplicative attention: $W \in \mathbb{R}^{d_2 \times d_1}$ is a weight matrix.

$$e_i = s^{\top} W h_i \in \mathbb{R}$$

■ Reduced-rank attention: $U \in \mathbb{R}^{k \times d_2}$, $V \in \mathbb{R}^{k \times d_1}$, $k \ll d_1, d_2$

$$e_i = s^{\top}(U^{\top}V)h_i = (Us)^{\top}(Vh_i)$$

Additive attention: [Bahdanau, Cho, and Bengio 2014]

$$e_i = v^{ op} \tanh(W_1 h_i + W_2 s) \in \mathbb{R}$$

- $W_1 \in \mathbb{R}^{d_3 \times d_1}$, $W_2 \in \mathbb{R}^{d_3 \times d_2}$ weight matrices; $v \in \mathbb{R}^{d_3}$ weight vector.
- d_3 (the attention dimensionality) is a hyperparameter.
- "Additive" is a weird/bad name using a FNN layer.

Attention is a general deep learning technique

■ More general definition of attention:

Given a set of *values*, and a vector *query*, **attention** is a technique to compute a weighted sum of the values, dependent on the query.

- We sometimes say that the query attends to the values.
- For example, in the seq2seq + attention model, each decoder hidden state (query) attends to all the encoder hidden states (values).

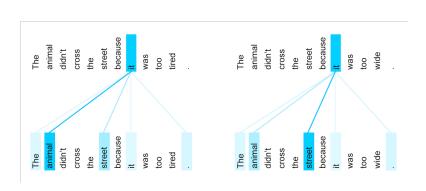
Table of Contents

From sequence models to attention

Transformers and computation flow

Memory and computation of GPT

Can we get rid of recurrence entirely?



Self-attention: keys, queries, values from same sequence

Let $\mathbf{w}_{1:n}$ be a sequence of words in vocabulary V.

For each \mathbf{w}_i , let $\mathbf{x}_i = E\mathbf{w}_i$, where $E \in \mathbb{R}^{d \times |V|}$ is an embedding matrix.

■ Transform each word embedding with trainable weight matrices $\mathbf{W}_Q, \mathbf{W}_K, \mathbf{W}_V \in \mathbb{R}^{d \times d}$:

$$\mathbf{q}_i = \mathbf{W}_Q \mathbf{x}_i \text{ (queries)} \quad \mathbf{k}_i = \mathbf{W}_K \mathbf{x}_i \text{ (keys)} \quad \mathbf{v}_i = \mathbf{W}_V \mathbf{x}_i \text{ (values)}$$

Compute pairwise similarities between keys and queries; normalize with softmax:

$$e_{ij} = \mathbf{q}_i^{ op} \mathbf{k}_j, \quad lpha_{ij} = rac{\exp(e_{ij})}{\sum_{j'} \exp(e_{ij'})}$$

■ Compute output for each word as weighted sum of values:

$$\mathbf{o}_i = \sum_j \alpha_{ij} \mathbf{v}_i$$

Scaled dot-product attention

■ Matrix form (multiple tokens): $\mathbf{Q} \in \mathbb{R}^{n \times d_k}, \mathbf{K} \in \mathbb{R}^{n \times d_k}, \mathbf{V} \in \mathbb{R}^{n \times d_v}$

$$Attn(\mathbf{Q}, \mathbf{K}, \mathbf{V}) = \operatorname{softmax}\left(\frac{\mathbf{Q}\mathbf{K}^{\top}}{\sqrt{d_k}}\right) \mathbf{V}.$$

- Why the scale $1/\sqrt{d_k}$? If entries are i.i.d. with variance σ^2 , then $Var(\boldsymbol{q}^{\top}\boldsymbol{k}) \propto d_k \sigma^4$; scaling keeps logits in a stable range for softmax.
- Benefit: enables parallel matmuls (QK^T and with V) over the entire sequence.

All tokens attend to all tokens in one or a few large matrix multiplies.

Barriers for Self-Attention as a building block

Barriers

- Doesn't have an inherent notion of order!
- No nonlinearities for deep learning magic!It's all just weighted averages
- Need to ensure we don't "look at the future" when predicting a sequence
 - · Like in machine translation
 - Or language modeling

Solutions

- Add position representations to the inputs
- Easy fix: apply the same feedforward network to each self-attention output
- Mask out the future by artificially setting attention weights to 0!

Solutions for a self-attention building block:

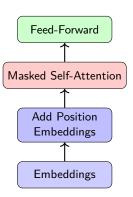
Self-attention: The basis.

Position representations:

 Specify the sequence order, since self-attention is an unordered function of its inputs.

Nonlinearities:

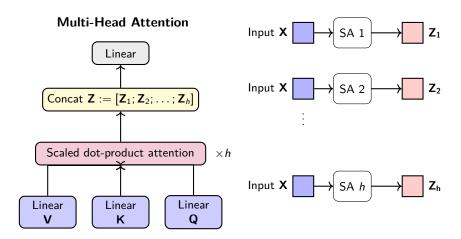
- At the output of the self-attention.
- Frequently implemented as a simple feed-forward network.



Masking:

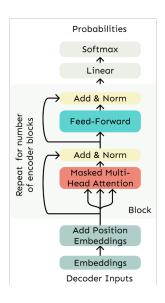
- In order to parallelize operations while not looking at the future.
- Keeps information about the future from "leaking" to the past.

Use multi-head attention to achieve better representation



The transformer decoder

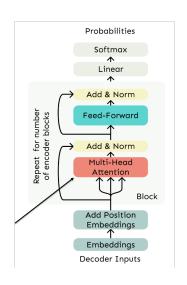
- The Transformer Decoder is a stack of Transformer Decoder blocks.
- Each block consists of:
 - Self-attention
 - Add & Norm
 - Feed-forward
 - Add & Norm
- That's it! We've gone through the Transformer Decoder.



The transformer encoder

- The Transformer decoder constrains to unidirectional context, as for language models.
- What if we want bidirectional context, like in a bidirectional RNN?
- This is the Transformer encoder.
 The only difference is that we remove the masking in the self-attention.

No Masking!



Self-Supervised Learning (SSL): the core idea

Core Idea: Train a model to solve a "puzzle" derived from the data itself, so it learns useful internal representations.

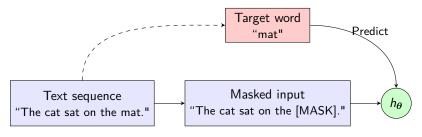


Figure: Learning by predicting missing words in text.

SSL in action: masked word prediction

Example: Masked Language Modeling (MLM)

- 1. Start with a complete sentence: "The cat sat on the mat."
- 2. Mask one token \rightarrow Input $\mathbf{x}' =$ "The cat sat on the [MASK]."
- 3. Pseudo-label $y_{pretext} = \text{``mat.''}$
- 4. Train the model to predict the masked token via cross-entropy loss

$$\min_{\boldsymbol{\theta}} \ J(\boldsymbol{\theta}) = -\sum_{i} \log P(y_{\text{pretext}}^{(i)} \mid \mathbf{x}'^{(i)}; \boldsymbol{\theta})$$

Goal

Learn language representations by predicting what's missing - without human labels.

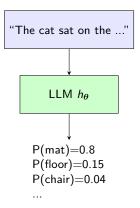
LLM pre-training: self-supervision at scale

Pretext Task: Predict the next token given the previous ones.

$$\min_{\boldsymbol{\theta}} J_{\text{pre}}(\boldsymbol{\theta}) = -\sum_{i=1}^{m} \log P(w_i \mid w_{< i}; \boldsymbol{\theta})$$

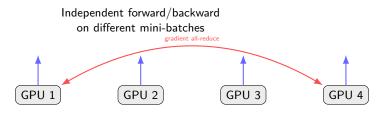
Learning objective:

- Train on massive text corpora without human labels.
- Use categorical cross-entropy loss.
- Model learns to represent syntax, semantics, and context.



From attention parallelism to distributed optimization

- RNNs: sequential dependency ⇒ limited overlap of forward/backward passes.
- **Transformers:** attention-based layers ⇒ fully batched computation.
- Enables efficient data, model, and pipeline parallelism.



Parallel architecture \Rightarrow distributed optimization using SGD + AllReduce.

Quadratic computation as a function of sequence length

- One of the benefits of self-attention over recurrence is that it's highly parallelizable.
- However, its total number of operations grows as $O(n^2d)$, where n is the sequence length and d is the dimensionality.

$$n \boxed{\frac{Q}{d}} \times d \boxed{\kappa^{\top}} = \boxed{\frac{Q\kappa^{\top}}{n}}$$

- Think of d as around **1,000** (though for LLMs it's much larger!).
- So, for a single (shortish) sentence, $n \le 30$; thus $n^2 \le 900$.
- In practice, we often set a bound like n = 512.
- But what if we'd like $n \ge 50,000$? For example, long documents?

Table of Contents

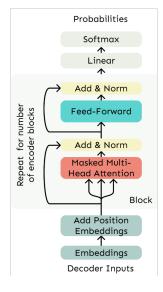
From sequence models to attention

Transformers and computation flow

Memory and computation of GPT

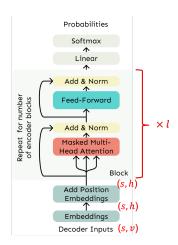
GPT: Generative pre-trained transformer

- A generative pre-trained transformer (GPT) is a type of LLMs.
- GPT is based on the decoder-only transformer.
- Each block consists of:
 - Self-attention
 - Add & Norm
 - Feed-forward
 - Add & Norm
- We will analyze the parameters, memories, and computation costs for decoder-only transformer.



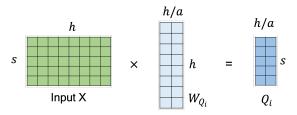
Notations for GPT

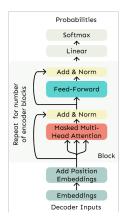
- Number of the transformer layers: l
- Sequence length: s
- Vocabulary size: v
- Embedding representation dims: h



Multi-head self-attention computations

- Number of heads: a
- Dims of each W_{Q_i} , W_{K_i} and W_{V_i} : $h \times \frac{h}{a}$

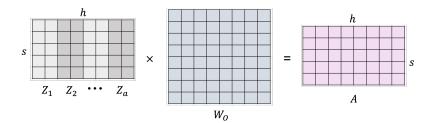




Multi-head self-attention memory

Number of heads: a

- Dims of each W_{Q_i} , W_{K_i} and W_{V_i} : $h \times \frac{h}{a}$
- Dims of each W_0 : $h \times h$



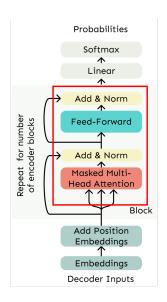
We need to store $\mathbf{W}_Q, \mathbf{W}_K, \mathbf{W}_V$ and \mathbf{W}_Q , which is in total $4h^2$

$$3 imes rac{h^2}{lpha} imes lpha = 3 h^2 \quad ext{and} \quad h^2$$

Feed-forward layer memory

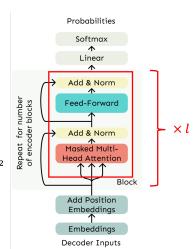
$$X' = \text{ReLU}(A \cdot W_1 + b_1) \cdot W_2 + b_2$$

- Dims of W_1 : $h \times 4h$
- Dims of each W₂: 4h × h
- We need to store W_1 and W_2 : $8h^2$
- The storage of b₁ and b₂ can be ignored



Transformer block memory

- Multi-head attentions: 4h²
- Feed-forward layers : $8h^2$
- *l* layers of attentions : $(4h^2 + 8h^2) \times l = 12lh^2$



Recap and fine-tuning

- What we have talked about today?
 - ⇒ How attention enables parallel and distributed computation?
 - ⇒ How transformer-based models build upon attention blocks?
 - ⇒ What is the memory complexity of decoder-based transformers?

Welcome anonymous survey!

