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Review of Parallel SGD: synchronize every time

min
x∈Rd

f (x) =
1
n

n∑
i=1

fi(x), where fi(x) = Eξi∼Di [F (x; ξi)] .

Central server

Local data on nodes

gk
i = ∇F (xk ; ξk

i ) (Local compt.)

xk+1 = xk − η
n

n∑
i=1

gk
i (Global comm.)

All nodes synchronize (i.e., globally average) every time.
Global average protocol: Ring-AllReduce or central server

Communication cost is O(n) which is high when n is large.



ECE 5290/7290 & ORIE 5290 3 / 44

Last-lecture: Compressed SGD

Compressed SGD: Each node i communicates its compressed gradient.

Global average ḡ =
1
n
∑

i
Q(gi )

Client 1

Q(g1) ḡ

Client 2

Q(g2) ḡ

Client 3

Q(g3) ḡ

Client 4

Q(g4) ḡ

gk
i = ∇F (xk ; ξk

i ) (Local compt.)

xk+1 = xk − η
n

n∑
i=1

Q(gk
i ) (Global comm.)

Compressed methods: quantization, sparsification

Reduce the communication cost by reducing the dimensionality.
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Last-lecture: Local SGD

Local SGD: Each node i performs τ -step SGD before averaging.

x(s+1)
i = x(s)

i − η∇F
(
x(s)

i ; ξ
(s)
i
)
, s = 1, · · · , τ (Local updates)

xk+1 =
1
n

n∑
i=1

x(τ)
i (Global comm.)

Reduce the temporal communication cost by τ .
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Global averaging protocol: averaging over a graph

Setup: A network of n nodes connected by a graph G = (V, E).
Goal: Each node i has a copy of the average 1

n
∑n

i=1 xi(0).

1 2

34

Node set V:

V = {1, 2, 3, 4}

Edge set E :

E = {(1, 2), (1, 4), (2, 3), (3, 4)}

Average consensus protocol:

xi(k + 1) =
∑

{j:(i,j)∈E}

wijxj(k)
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Global averaging protocol: averaging over a graph

GPU 1

GPU 2

GPU 3

GPU 4

∑
i g (2)

i

∑
i g (1)

i

∑
i g (4)

i

∑
i g (3)

i

Reduce-scatter
All gather

Ring-AllReduce: O(n) latency

Central server

Local data on nodes

Central server: O(n) comm. cost.

Both global averaging protocols require O(n) complexity.
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Moving beyond global averaging

Can we leverage Gossip to reduce the spatial communication cost?
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Neighbor set

Setup: A network of n nodes connected by a graph G = (V, E).

1 2

34

Node set V:

V = {1, 2, 3, 4}

Edge set E :

E = {(1, 2), (1, 4), (2, 3), (3, 4)}

Neighbor set Ni for node i :

Ni = i ∪ {j : (i , j) ∈ E}
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Neighbor set

Setup: A network of n nodes connected by a graph G = (V, E).

1 2

34

Neighbor set N1 for node 1:

N1 = {1, 2, 4}

Neighbor set N2 for node 2:

N2 = {1, 2, 3}

Neighbor set N3 for node 3:

N3 = {2, 3, 4}

Neighbor set N4 for node 4:

N4 = {1, 3, 4}



ECE 5290/7290 & ORIE 5290 11 / 44

Key idea of decentralized SGD

Instead of global averaging, partial averaging (gossip) with neighbors
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Example of decentralized SGD on the ring graph

Consider the 4-node ring graph given above.

Decentralized SGD on the 4-node ring graph:
1. At time k, each node i runs the local SGD:

x(k+ 1
2 )

i = x(k)
i − η∇F (x(k)

i ; ξ
(k)
i )

2. At time k, every node i sent its current state to its neighbors j ∈ Ni .

3. Every node i update its state by partial averaging with its neighbors:

For {l ,m, i} ∈ Ni : x (k+1)
i =

1
3x (k+ 1

2 )
i +

1
3x (k+ 1

2 )
l +

1
3x (k+ 1

2 )
m

Reduce the per-iteration comm. cost of PSGD from O(n) to O(1).
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Review of weight matrix for the ring graph

The weight matrix for the 4-node ring graph is static

1 2

34

W =


1/3 1/3 0 1/3
1/3 1/3 1/3 0
0 1/3 1/3 1/3

1/3 0 1/3 1/3



W is doubly stochastic (1T W = 1T and W1 = 1).

(Deterministic) Gossip: reach consensus

Adding more edges to the graph can improve the consensus rate
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More graph topologies

Decentralized SGD can be defined for all undirected graphs.

1

2
3

4

5

6
7

8

Ring graph: every node has 2
neighbors

1

2
3

4

5

6
7

8

Every node has 3 neighbors.
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Decentralized SGD: partial averaging via gossip

DSGD: local SGD + partial averaging with neighbors

Decentralized SGD (DSGD)
Given a communication graph G = (V, E), at each round k,

1. Each node i runs the local SGD:

x(k+ 1
2 )

i = x(k)
i − η∇F (x(k)

i ; ξ
(k)
i )

2. Each node i broadcasts its current state to its neighbors j ∈ Ni .

3. All nodes update their states by partial averaging with neighbors

xk+1
i =

∑
j∈Ni

wijx
k+ 1

2
j

DSGD reduces the spatial comm. cost when the graph is sparse.
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DSGD has lower per-iter comm. cost than PSGD

Experiment on a 256-GPU cluster. Use Ring-AllReduce as global
averaging protocol for PSGD.

Model Ring-AllReduce (ms) Partial Averaging (ms)

ResNet-50 (25.5M) 278 150

Table: Per-iteration communication runtime (lower is better [1]).

46% reduction vs. PSGD.

[1] Y. Chen, K. Yuan, Y. Zhang, P. Pan, Y. Xu, and W. Yin, “Accelerating Gossip SGD with
Periodic Global Averaging , ICML 2021.
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DSGD is more communication-efficient than PSGD

DSGD (BlueFog) has better scalability than PSGD (Horovod) due to
its small comm. overhead.

[2] B. Ying, K. Yuan, H. Hu, Y. Chen and W. Yin, BlueFog: Make decentralized algorithms
practical for optimization and deep learning, arXiv: 2111. 04287, 2021
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Summary of DSGD

Key idea: Instead of global averaging, partial averaging with neighbors

DSGD
xk+ 1

2
i = xk

i − η∇F (xk
i ; ξ

k
i )

xk+1
i =

∑
j∈Ni

wijx
k+ 1

2
j

Each node i samples mini-batch ξk
i and computes ∇F

(
xk

i ; ξ
k
i
)
.

Nodes synchronize with its neighbors.

Benefit: Reduce comm. cost to O (dmax) where dmax = maxi {|Ni |}.

How about its convergence?
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Quadratic objectives: setup and average dynamics

Consider local quadratic objectives

fi(x) = 1
2 x⊤Aix − b⊤

i x,

and the decentralized update (no noise):

xk+1
i =

n∑
j=1

wij

(
xk

j − η(Ajxk
j − bj)

)
, where wij = 0 if j /∈ Ni .

Define the (virtual) average x̄k = 1
n
∑n

i=1 xk
i , and if W is

column-stochastic (
∑

i wij = 1), then

x̄k+1 = x̄k − η 1
n

n∑
j=1

(Ajxk
j − bj).

The average iterate follows a global gradient-like step on local gradients.
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Quadratic objectives: gradient decomposition

We can decompose each local gradient around the average point:

Ajxk
j − bj = Aj x̄k − bj + Aj(xk

j − x̄k).

Substituting into the update gives

x̄k+1 = x̄k − η

[
1
n

n∑
j=1

(Aj x̄k − bj)

]
− η 1

n

n∑
j=1

Aj(xk
j − x̄k).

Define the consensus error term:

Ek := 1
n

n∑
j=1

Aj(xk
j − x̄k).

Then x̄k+1 = x̄k − η 1
n

n∑
i=1
∇fi(x̄k)− η Ek .
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Quadratic objectives: interpretation
Hence the average iterate evolves as

x̄k+1 = x̄k − η

(
1
n

n∑
i=1
∇fi(x̄k) + Ek

)
.

If the matrices Ai are uniformly bounded, say ∥Ai∥ ≤ L, then

∥Ek∥ ≤ 1
n

n∑
i=1
∥Ai∥ ∥xk

i − x̄k∥ ≤ L max
i
∥xk

i − x̄k∥.

The virtual consensus point follows a gradient step on the global objective
1
n
∑

i fi , up to an error proportional to the consensus disagreement.

Column-stochasticity (
∑

i wij = 1) preserves the average.
The consensus error ∥Ek∥ decays with the spectral gap 1− λ2(W ).
Faster consensus ⇒ smaller error ⇒ near-centralized convergence.
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Does DSGD ensure convergence?

Convergence of DSGD depends on the consensus rate of the
partial averaging and the convergence of PSGD.

The consensus rate depends on the graph topology.
• The fully connected graph reaches the consensus after one-step

averaging.
• For a ring graph, although not exact consensus, still closer.

PSGD can tolerate inexact consensus if the error is decreasing.

Convergence guarantee? Speed?
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Partial averaging as one-step average consensus

Write the DSGD in the matrix form.

DSGD
xk+ 1

2
i = xk

i − η∇F (x(k)
i ; ξ

(k)
i )

xk+1 = W xk+ 1
2

where x l = [x l
1, · · · , x l

n], l = k, k + 1
2 .

Recall average consensus algorithm (fixed weight matrix)

x(t + 1) = Wx(t) = Wtx(0)

The partial averaging in DSGD is one-step (t = 1) version of
average consensus algorithm with varying x(0) = xk+ 1

2
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Review: Convergence rate of consensus

Recall the average consensus algorithm (fixed weight matrix)

x(t + 1) = Wx(t) = Wtx(0)

Theorem 1 (Convergence rate of average consensus)
If W is doubly stochastic, it holds for the average consensus protocol that∥∥∥∥x(t)− 11T x(t)

n

∥∥∥∥ ≤ ρt
∥∥∥∥x(0)− 11T x(0)

n

∥∥∥∥ ,
where ρ = maxi≥2 |λi(W)| < 1.

Q: Is one-step consensus enough for DSGD’s convergence?
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Evolution of DSGD

min
x∈Rd

f (x) =
1
n

n∑
i=1

fi(x), where fi(x) = Eξi∼Di [F (x; ξi)] .

DSGD converges if partial averaging reaches consensus (global
average) asymptotically

Letting x̄k+l = 11T xk+l

n , ℓ = 1/2, 0, partial averaging in DSGD:∥∥xk+1 − x̄k+1∥∥ ≤ ρ
∥∥∥xk+ 1

2 − x̄k+ 1
2

∥∥∥
≤ ρη

n∑
i=1

∥∥∥∥∥∇fi(xk
i )−

1
n

n∑
i=1
∇fi(xk

i )

∥∥∥∥∥+ ρηnσ
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Evolution of DSGD

Letting x̄k+l = 11T xk+l

n , ℓ = 1/2, 0, partial averaging in DSGD:∥∥xk+1 − x̄k+1∥∥
≤ ρη

n∑
i=1

∥∥∥∥∥∇fi(xk
i )−

1
n

n∑
i=1
∇fi(xk

i )

∥∥∥∥∥+ ρηnσ

≤ ρη

n∑
i=1

∥∥∇fi(x̄k
i )−∇fi(xk

i )
∥∥+ ρη

n∑
i=1

∥∥∇fi(x̄k
i )−∇f (x̄k

i )
∥∥

+ ρη

n∑
i=1

∥∥∥∥∥1
n

n∑
i=1
∇fi(xk

i )−
1
n

n∑
i=1
∇fi(x̄k

i )

∥∥∥∥∥+ ρηnσ

≤ 2ρηL
∥∥x̄k − xk∥∥+ ρηb + ρηnσ

where b2 ≜ 1
n
∑n

i=1 ∥∇fi(x)−∇f (x)∥2 and L is the smoothness.
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Evolution of DSGD

Letting x̄k+l = 11T xk+l

n , ℓ = 1/2, 0, partial averaging in DSGD:

∥∥xk − x̄k∥∥ ≤ (2ρηL)k ∥∥x̄k − xk∥∥+ ρη(b + nσ)
1− 2ρηL → 0 when η → 0

where b2 ≜ 1
n
∑n

i=1 ∥∇fi(x)−∇f (x)∥2 and L is the smoothness.
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Convergence rate of DSGD

Assumptions:
fi : L-smooth

∇F (x; ξi) is an unbiased estimate of ∇fi(x), with bounded variance
Bounded data heterogeneity: 1

n
∑n

i=1 ∥∇fi(x)−∇f (x)∥2 ≤ b2.

Theorem 1 (Convergence rate of DSGD)

Suppose above assumptions hold and let η = 1/
√

K . Then

1
K

K∑
k=1

E[||∇f (x̄k)||22] ≤ O
(

σ√
nK

+
ρ2/3σ2/3

K 2/3(1− ρ)1/3 +
ρ2/3b2/3

K 2/3(1− ρ)2/3

)



ECE 5290/7290 & ORIE 5290 30 / 44

Convergence of DSGD

Theorem 1 (Convergence rate of DSGD)

Suppose above assumptions hold and let η = 1/
√

K . Then

1
K

K∑
k=1

E[||∇f (x̄k)||22] ≤ O
(

σ√
nK

+
ρ2/3σ2/3

K 2/3(1− ρ)1/3 +
ρ2/3b2/3

K 2/3(1− ρ)2/3

)

The first term dominates when K →∞, which suggests DSGD
achieves linear speedup asymptotically.

Convergence of DSGD depends on the network topology: sparse
topology (ρ→ 1) results in slower convergence.

Convergence of DSGD depends on the data heterogeneity: large
heterogeneity b results in slower convergence.
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PSGD v.s. DSGD

PSGD: O
(

σ√
nK

)
Transient iterations: Extra overhead ≤ σ√

nK

DSGD: O
( σ√

nK
+

ρ2/3σ2/3

K 2/3(1− ρ)1/3 +
ρ2/3b2/3

K 2/3(1− ρ)2/3

Extra overhead )

DSGD can asymptotically
converge as fast as P-SGD

Transient iterations:

O
(

ρ4n3

σ2(1− ρ)2 +
ρ4n3b4

σ6(1− ρ)4

)
affected by network topology
and data heterogeneity.
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Summary of DSGD

Principle: In each time step, nodes update its state by local SGD
and communicate with its neighbors to perform partial averaging.
Benefit: Low per-iter. communication cost when graph is sparse;
achieve consensus asymptotically.
Drawback: Cannot handle heterogeneous data setting.
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Why DSGD suffers from data heterogeneity?

DSGD
xk+ 1

2
i = xk

i − η∇F (x(k)
i ; ξ

(k)
i )

xk+1
i =

∑
j∈Ni

wijx
k+ 1

2
j

Consider the setting without gradient noise, DSGD can be written as

xk+1
i =

∑
j∈Ni

wij

(
xk

i − η∇fi(x(k)
i )
)

When achieving stationary: xk
i = x∗ for all i . Then the next step is

xk+1
i =

∑
j∈Ni

wij (x∗ − η∇fi(x∗)) = x∗ − η
∑
j∈Ni

wij∇fi(x∗)
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Why DSGD suffers from data heterogeneity?

In homogeneous scenario: ∇fi(x∗) = 0 for all i . Then the stationary
point x∗ is stable because

xk+1
i = x∗ − η

∑
j∈Ni

wij∇fi(x∗) = x∗

In heterogeneous setting: ∇fi(x∗) ̸= 1
n
∑n

i=1∇fi(x∗) = ∇f (x∗) = 0.

xk+1
i = x∗ − η

∑
j∈Ni

wij∇fi(x∗) ̸= x∗

suggesting the stationary point is not stable.

Cause divergence when b2 ≜ 1
n
∑n

i=1 ∥∇fi(x)−∇f (x)∥2 is large.

Q: How to alleviate this issue?
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Insights from mini-batch SGD

Single Machine

Mini-batch of B samples

1
B
∑B

j=1 ∇F (x; ξj )

Mini-batch SGD

Decentralized network

Local data on nodes

Decentralized SGD

Gradient ∇fi(x) for each node can be viewed as a "mini-batch"
gradient with respect to the the global gradient ∇f (x).

Data heterogeneity b2 ≜ 1
n
∑n

i=1 ∥∇fi(x)−∇f (x)∥2 is in the same
spirit of "variance", but is for each worker.

A: Applying ’variance reduction’ technique to local workers.
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Recall: how SVRG reduces the variance

Key idea: SVRG replaces noisy gradients with a corrected version that
re-centers them around the full gradient at a snapshot point.

Periodically calculate the full gradient at a "snapshot" point x̃.
Use this full gradient as a "low-variance anchor" to correct

vt
SVRG = ∇fit (xt)−∇fit (x̃) +∇f (x̃)

fit : gradient for the current random sample it .
x̃: snapshot point (updated every epoch).
∇f (x̃): full gradient at x̃.

How to track the global gradient in decentralized setting?
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Track the global gradient

Key idea: introduce additional variable y which converges to the global
gradient when ∇fi(xk

i ) achieves stationary point.

Initialize the tracking variable for each node as y0
i = ∇fi(x(0)

i ).
Synchronize the smoothed version with neighbors

yk+1
i =

∑
j∈Ni

wij
(
yk

j +∇fj(xk+1
j )−∇fj(xk

j )
)

When each node reaches stationary, the gradient difference of two
steps vanishes and

yk+1
i → 1

n

n∑
i=1
∇fi(xk

i ) ← global gradient
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Tracking variable converges to global gradient

Green: global gradient

Tracking variable converges to the global gradient

Simulation results are from [Ren IEEE TAC 2007]
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Gradient tracking algorithm

Consider the general setting where we have gradient noise. Gradient
tracking algorithm is defined as follows.

xk+1
i =

∑
j∈Ni

wij
(
xk

i − ηyk
i
)

yk+1
i =

∑
j∈Ni

wij
(
yk

j +∇F (xk+1
j ; ξk+1

j )−∇F (xk
j ; ξ

k)
)

Key difference: introduce a tracking variable that can converge to
the global averaged gradient asymptotically
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Convergence rate of Gradient Tracking

Assumptions:
fi : L-smooth

∇F (x; ξi) is an unbiased estimate of ∇fi(x), with bounded variance

Theorem 2 (Convergence rate of GT)

Suppose above assumptions hold and with proper η. Then

1
K

K∑
k=1

E[||∇f (x̄k)||22] ≤ O
(

σ√
nK

+
ρ2/3σ2/3

K 2/3(1− ρ)1/3

)

Key feature: remove the bounded data heterogeneity assumption!
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DSGD v.s. Gradient Tracking

DSGD: O
( σ√

nK
+

ρ2/3σ2/3

K 2/3(1− ρ)1/3 +
ρ2/3b2/3

K 2/3(1− ρ)2/3

Extra overhead )

GT: O
( σ√

nK
+

ρ2/3σ2/3

K 2/3(1− ρ)1/3

Extra overhead )

Gradient Tracking shorten the transient stage

DSGD: O
(

ρ4n3

σ2(1−ρ)2 +
ρ4n3b4

σ6(1−ρ)4

)
−→ GT: O

(
ρ4n3

σ2(1−ρ)2

)
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Empirical studies on heterogeneous data

DNN training on ring graph (1− ρ = O
(
n−2))

Gradient tracking has shorter transient period.
Gradient tracking outperforms DSGD on heterogeneous data.

Simulation results are from [Ren IEEE TAC 2007]



Recap and fine-tuning

What we have talked about today?
⇒ Decentralized SGD reduces spatial communication reduction via

partial averaging with neighbors.
⇒ Decentralized SGD achieves the same convergence rate as

Parallel SGD asymptotically.
⇒ Gradient Tracking tackles the data hetergenoity issue by tracking

the global averaged gradient.

Welcome anonymous survey!
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