Distributed Optimization for Machine Learning

Lecture 16 - Decentralized SGD and Gradient tracking

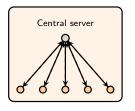
Tianyi Chen

School of Electrical and Computer Engineering Cornell Tech, Cornell University

October 22, 2025

Review of Parallel SGD: synchronize every time

$$\min_{\mathbf{x} \in \mathbb{R}^d} f(\mathbf{x}) = \frac{1}{n} \sum_{i=1}^n f_i(\mathbf{x}), \quad \text{where } f_i(\mathbf{x}) = \mathbb{E}_{\xi_i \sim D_i}[F(\mathbf{x}; \xi_i)].$$



$$g_i^k =
abla F(oldsymbol{x}^k; \xi_i^k)$$
 (Local compt.) $oldsymbol{x}^{k+1} = oldsymbol{x}^k - rac{\eta}{n} \sum_{i=1}^n g_i^k$ (Global comm.)

- All nodes synchronize (i.e., *globally average*) every time.
- Global average protocol: Ring-AllReduce or central server

Communication cost is O(n) which is high when n is large.

Last-lecture: Compressed SGD

Compressed SGD: Each node *i* communicates its compressed gradient.

Global average
$$\bar{g} = \frac{1}{n} \sum_{i} Q(g_i)$$

$$Q(g_1) \sqrt{\bar{g}} \qquad Q(g_2) \sqrt{\bar{g}} \qquad Q(g_3) \sqrt{\bar{g}} \qquad Q(g_4) \sqrt{\bar{g}}$$
Client 1 Client 2 Client 3 Client 4
$$g_i^k = \nabla F(\mathbf{x}^k; \, \xi_i^k) \qquad \text{(Local compt.)}$$

$$\mathbf{x}^{k+1} = \mathbf{x}^k - \frac{\eta}{n} \sum_{i=1}^n \mathbf{Q}(g_i^k) \qquad \text{(Global comm.)}$$

Compressed methods: quantization, sparsification

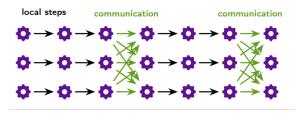
Reduce the communication cost by reducing the dimensionality.

Last-lecture: Local SGD

Local SGD: Each node i performs τ -step SGD before averaging.

$$\mathbf{x}_{i}^{(s+1)} = \mathbf{x}_{i}^{(s)} - \eta \nabla F(\mathbf{x}_{i}^{(s)}; \boldsymbol{\xi}_{i}^{(s)}), \ s = 1, \cdots, \tau \quad \text{(Local updates)}$$

$$\mathbf{x}^{k+1} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_{i}^{(\tau)} \quad \text{(Global comm.)}$$



Reduce the temporal communication cost by τ .

Table of Contents

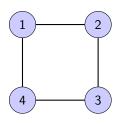
Decentralized SGD: spatial communication reduction

Convergence of decentralized SGD

Gradient tracking: tackling data heterogeneity

Global averaging protocol: averaging over a graph

- **Setup:** A network of *n* nodes connected by a graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$.
- **Goal:** Each node *i* has a copy of the average $\frac{1}{n} \sum_{i=1}^{n} x_i(0)$.



■ Node set \mathcal{V} :

$$\mathcal{V}=\{1,2,3,4\}$$

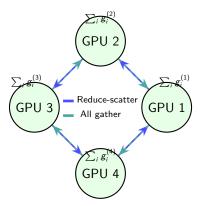
■ Edge set \mathcal{E} :

$$\mathcal{E} = \{(1,2), (1,4), (2,3), (3,4)\}$$

Average consensus protocol:

$$x_i(k+1) = \sum_{\{j:(i,j)\in\mathcal{E}\}} w_{ij} x_j(k)$$

Global averaging protocol: averaging over a graph



Central server

Central server: $\mathcal{O}(n)$ comm. cost.

Ring-AllReduce: $\mathcal{O}(n)$ latency

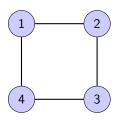
Both global averaging protocols require $\mathcal{O}(n)$ complexity.

Moving beyond global averaging

Can we leverage Gossip to reduce the spatial communication cost?

Neighbor set

Setup: A network of *n* nodes connected by a graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$.



■ Node set \mathcal{V} :

$$\mathcal{V}=\{1,2,3,4\}$$

■ Edge set \mathcal{E} :

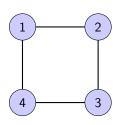
$$\mathcal{E} = \{(1,2), (1,4), (2,3), (3,4)\}$$

■ Neighbor set \mathcal{N}_i for node i:

$$\mathcal{N}_i = i \cup \{j : (i,j) \in \mathcal{E}\}$$

Neighbor set

Setup: A network of *n* nodes connected by a graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$.



■ Neighbor set \mathcal{N}_1 for node 1:

$$\mathcal{N}_1 = \{1,2,4\}$$

■ Neighbor set \mathcal{N}_2 for node 2:

$$\mathcal{N}_2=\{1,2,3\}$$

■ Neighbor set \mathcal{N}_3 for node 3:

$$\mathcal{N}_3=\{2,3,4\}$$

■ Neighbor set \mathcal{N}_4 for node 4:

$$\mathcal{N}_4=\{1,3,4\}$$

Key idea of decentralized SGD

Instead of global averaging, partial averaging (gossip) with neighbors

Example of decentralized SGD on the ring graph

Consider the 4-node ring graph given above.

Decentralized SGD on the 4-node ring graph:

1. At time k, each node i runs the local SGD:

$$\mathbf{x}_{i}^{(k+\frac{1}{2})} = \mathbf{x}_{i}^{(k)} - \eta \nabla F(\mathbf{x}_{i}^{(k)}; \boldsymbol{\xi}_{i}^{(k)})$$

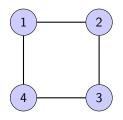
- 2. At time k, every node i sent its current state to its neighbors $j \in \mathcal{N}_i$.
- 3. Every node *i* update its state by partial averaging with its neighbors:

For
$$\{I, m, i\} \in \mathcal{N}_i$$
: $x_i^{(k+1)} = \frac{1}{3} x_i^{(k+\frac{1}{2})} + \frac{1}{3} x_I^{(k+\frac{1}{2})} + \frac{1}{3} x_m^{(k+\frac{1}{2})}$

■ Reduce the per-iteration comm. cost of PSGD from $\mathcal{O}(n)$ to $\mathcal{O}(1)$.

Review of weight matrix for the ring graph

■ The weight matrix for the 4-node ring graph is static

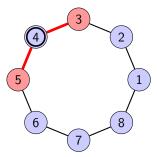


$$\mathbf{W} = \begin{bmatrix} 1/3 & 1/3 & 0 & 1/3 \\ 1/3 & 1/3 & 1/3 & 0 \\ 0 & 1/3 & 1/3 & 1/3 \\ 1/3 & 0 & 1/3 & 1/3 \end{bmatrix}$$

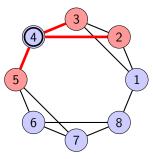
- W is doubly stochastic $(1^TW = 1^T)$ and W1 = 1.
- (Deterministic) Gossip: reach consensus
- Adding more edges to the graph can improve the consensus rate

More graph topologies

Decentralized SGD can be defined for all undirected graphs.



Ring graph: every node has 2 neighbors



Every node has 3 neighbors.

Decentralized SGD: partial averaging via gossip

■ DSGD: local SGD + partial averaging with neighbors

Decentralized SGD (DSGD)

Given a communication graph G = (V, E), at each round k,

1. Each node *i* runs the local SGD:

$$\mathbf{x}_{i}^{(k+\frac{1}{2})} = \mathbf{x}_{i}^{(k)} - \eta \nabla F(\mathbf{x}_{i}^{(k)}; \boldsymbol{\xi}_{i}^{(k)})$$

- 2. Each node i broadcasts its current state to its neighbors $j \in \mathcal{N}_i$.
- 3. All nodes update their states by partial averaging with neighbors

$$\mathbf{x}_i^{k+1} = \sum_{j \in \mathcal{N}_i} w_{ij} \mathbf{x}_j^{k+\frac{1}{2}}$$

DSGD reduces the spatial comm. cost when the graph is sparse.

DSGD has lower per-iter comm. cost than PSGD

 Experiment on a 256-GPU cluster. Use Ring-AllReduce as global averaging protocol for PSGD.

Model	Ring-AllReduce (ms)	Partial Averaging (ms)
ResNet-50 (25.5M)	278	150

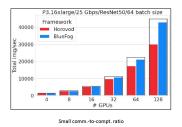
Table: Per-iteration communication runtime (lower is better [1]).

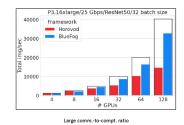
■ 46% reduction vs. PSGD.

[1] Y. Chen, K. Yuan, Y. Zhang, P. Pan, Y. Xu, and W. Yin, "Accelerating Gossip SGD with Periodic Global Averaging , ICML 2021.

DSGD is more communication-efficient than PSGD

 DSGD (BlueFog) has better scalability than PSGD (Horovod) due to its small comm. overhead.





[2] B. Ying, K. Yuan, H. Hu, Y. Chen and W. Yin, BlueFog: Make decentralized algorithms

Summary of DSGD

Key idea: Instead of global averaging, partial averaging with neighbors

DSGD

$$egin{aligned} oldsymbol{x}_i^{k+rac{1}{2}} &= oldsymbol{x}_i^k - \eta \,
abla F(oldsymbol{x}_i^k; oldsymbol{\xi}_i^k) \ oldsymbol{x}_i^{k+1} &= \sum_{j \in \mathcal{N}_i} w_{ij} oldsymbol{x}_j^{k+rac{1}{2}} \end{aligned}$$

- Each node *i* samples mini-batch ξ_i^k and computes $\nabla F(\mathbf{x}_i^k; \xi_i^k)$.
- Nodes synchronize with its neighbors.

Benefit: Reduce comm. cost to $O(d_{max})$ where $d_{max} = \max_i \{|\mathcal{N}_i|\}$.

How about its convergence?

Quadratic objectives: setup and average dynamics

Consider local quadratic objectives

$$f_i(\mathbf{x}) = \frac{1}{2}\mathbf{x}^{\top}\mathbf{A}_i\mathbf{x} - \mathbf{b}_i^{\top}\mathbf{x},$$

and the decentralized update (no noise):

$$\mathbf{x}_i^{k+1} = \sum_{j=1}^n w_{ij} \Big(\mathbf{x}_j^k - \eta (\mathbf{A}_j \mathbf{x}_j^k - \mathbf{b}_j) \Big), \text{ where } w_{ij} = 0 \text{ if } j \notin \mathcal{N}_i.$$

Define the (virtual) average $\bar{\mathbf{x}}^k = \frac{1}{n} \sum_{i=1}^n \mathbf{x}_i^k$, and if **W** is **column-stochastic** $(\sum_i w_{ij} = 1)$, then

$$\bar{\boldsymbol{x}}^{k+1} = \bar{\boldsymbol{x}}^k - \eta \, \frac{1}{n} \sum_{j=1}^n (\boldsymbol{A}_j \boldsymbol{x}_j^k - \boldsymbol{b}_j).$$

the average iterate follows a global gradient-like step on local gradients.

Quadratic objectives: gradient decomposition

We can decompose each local gradient around the average point:

$$\mathbf{A}_{j}\mathbf{x}_{j}^{k}-\mathbf{b}_{j}=\mathbf{A}_{j}\mathbf{\bar{x}}^{k}-\mathbf{b}_{j}+\mathbf{A}_{j}(\mathbf{x}_{j}^{k}-\mathbf{\bar{x}}^{k}).$$

Substituting into the update gives

$$\bar{\boldsymbol{x}}^{k+1} = \bar{\boldsymbol{x}}^k - \eta \left[\frac{1}{n} \sum_{j=1}^n (\boldsymbol{A}_j \bar{\boldsymbol{x}}^k - \boldsymbol{b}_j) \right] - \eta \frac{1}{n} \sum_{j=1}^n \boldsymbol{A}_j (\boldsymbol{x}_j^k - \bar{\boldsymbol{x}}^k).$$

Define the consensus error term:

$$\mathbf{E}_k := \frac{1}{n} \sum_{i=1}^n \mathbf{A}_j (\mathbf{x}_j^k - \bar{\mathbf{x}}^k).$$

Then
$$\bar{\mathbf{x}}^{k+1} = \bar{\mathbf{x}}^k - \eta \frac{1}{n} \sum_{i=1}^n \nabla f_i(\bar{\mathbf{x}}^k) - \eta \mathbf{E}_k.$$

Quadratic objectives: interpretation

Hence the average iterate evolves as

$$\bar{\mathbf{x}}^{k+1} = \bar{\mathbf{x}}^k - \eta \left(\frac{1}{n} \sum_{i=1}^n \nabla f_i(\bar{\mathbf{x}}^k) + \mathbf{E}_k \right).$$

If the matrices \mathbf{A}_i are uniformly bounded, say $\|\mathbf{A}_i\| \leq L$, then

$$\|\mathbf{E}_k\| \leq \frac{1}{n} \sum_{i=1}^n \|\mathbf{A}_i\| \|\mathbf{x}_i^k - \bar{\mathbf{x}}^k\| \leq L \max_i \|\mathbf{x}_i^k - \bar{\mathbf{x}}^k\|.$$

The virtual consensus point follows a gradient step on the *global objective* $\frac{1}{n}\sum_i f_i$, up to an error proportional to the consensus disagreement.

- Column-stochasticity ($\sum_i w_{ij} = 1$) preserves the average.
- The consensus error $\|\boldsymbol{E}_k\|$ decays with the spectral gap $1 \lambda_2(W)$.
 - Faster consensus \Rightarrow smaller error \Rightarrow near-centralized convergence.

Does DSGD ensure convergence?

- **Convergence of DSGD** depends on the consensus rate of the partial averaging and the convergence of PSGD.
- The consensus rate depends on the graph topology.
 - The fully connected graph reaches the consensus after one-step averaging.
 - For a ring graph, although not exact consensus, still closer.
- PSGD can tolerate inexact consensus if the error is decreasing.
- **■** Convergence guarantee? Speed?

Table of Contents

Decentralized SGD: spatial communication reduction

Convergence of decentralized SGD

Gradient tracking: tackling data heterogeneity

Partial averaging as one-step average consensus

Write the DSGD in the matrix form.

DSGD

$$\mathbf{x}_{i}^{k+\frac{1}{2}} = \mathbf{x}_{i}^{k} - \eta \, \nabla F(\mathbf{x}_{i}^{(k)}; \boldsymbol{\xi}_{i}^{(k)})$$
 $\mathbf{x}^{k+1} = W \mathbf{x}^{k+\frac{1}{2}}$

where
$$\mathbf{x}^{l} = [\mathbf{x}_{1}^{l}, \cdots, \mathbf{x}_{n}^{l}], l = k, k + \frac{1}{2}.$$

Recall average consensus algorithm (fixed weight matrix)

$$\mathbf{x}(t+1) = \mathbf{W}\mathbf{x}(t) = \mathbf{W}^t\mathbf{x}(0)$$

■ The partial averaging in DSGD is one-step (t = 1) version of average consensus algorithm with varying $x(0) = x^{k+\frac{1}{2}}$

Review: Convergence rate of consensus

Recall the average consensus algorithm (fixed weight matrix)

$$\mathbf{x}(t+1) = \mathbf{W}\mathbf{x}(t) = \mathbf{W}^t\mathbf{x}(0)$$

Theorem 1 (Convergence rate of average consensus)

If W is doubly stochastic, it holds for the average consensus protocol that

$$\left\|\mathbf{x}(t) - \frac{\mathbf{1}\mathbf{1}^T\mathbf{x}(t)}{n}\right\| \leq \rho^t \left\|\mathbf{x}(0) - \frac{\mathbf{1}\mathbf{1}^T\mathbf{x}(0)}{n}\right\|,$$

where $\rho = \max_{i \geq 2} |\lambda_i(\mathbf{W})| < 1$.

Q: Is one-step consensus enough for DSGD's convergence?

Evolution of DSGD

$$\min_{\boldsymbol{x} \in \mathbb{R}^d} f(\boldsymbol{x}) = \frac{1}{n} \sum_{i=1}^n f_i(\boldsymbol{x}), \quad \text{where } f_i(\boldsymbol{x}) = \mathbb{E}_{\xi_i \sim D_i}[F(\boldsymbol{x}; \xi_i)].$$

- DSGD converges if partial averaging reaches consensus (global average) asymptotically
- Letting $\bar{\mathbf{x}}^{k+l} = \frac{\mathbf{1}^T \mathbf{x}^{k+l}}{n}, \ell = 1/2, 0$, partial averaging in DSGD:

$$\begin{aligned} \|\mathbf{x}^{k+1} - \bar{\mathbf{x}}^{k+1}\| &\leq \rho \|\mathbf{x}^{k+\frac{1}{2}} - \bar{\mathbf{x}}^{k+\frac{1}{2}}\| \\ &\leq \rho \eta \sum_{i=1}^{n} \left\| \nabla f_i(\mathbf{x}_i^k) - \frac{1}{n} \sum_{i=1}^{n} \nabla f_i(\mathbf{x}_i^k) \right\| + \rho \eta n \sigma \end{aligned}$$

Evolution of DSGD

■ Letting $\bar{\mathbf{x}}^{k+l} = \frac{\mathbf{1}^T \mathbf{x}^{k+l}}{n}, \ell = 1/2, 0$, partial averaging in DSGD:

$$\begin{aligned} & \left\| \boldsymbol{x}^{k+1} - \bar{\boldsymbol{x}}^{k+1} \right\| \\ & \leq \rho \eta \sum_{i=1}^{n} \left\| \nabla f_{i}(\boldsymbol{x}_{i}^{k}) - \frac{1}{n} \sum_{i=1}^{n} \nabla f_{i}(\boldsymbol{x}_{i}^{k}) \right\| + \rho \eta n \sigma \\ & \leq \rho \eta \sum_{i=1}^{n} \left\| \nabla f_{i}(\bar{\boldsymbol{x}}_{i}^{k}) - \nabla f_{i}(\boldsymbol{x}_{i}^{k}) \right\| + \rho \eta \sum_{i=1}^{n} \left\| \nabla f_{i}(\bar{\boldsymbol{x}}_{i}^{k}) - \nabla f(\bar{\boldsymbol{x}}_{i}^{k}) \right\| \\ & + \rho \eta \sum_{i=1}^{n} \left\| \frac{1}{n} \sum_{i=1}^{n} \nabla f_{i}(\boldsymbol{x}_{i}^{k}) - \frac{1}{n} \sum_{i=1}^{n} \nabla f_{i}(\bar{\boldsymbol{x}}_{i}^{k}) \right\| + \rho \eta n \sigma \\ & \leq 2\rho \eta L \left\| \bar{\boldsymbol{x}}^{k} - \boldsymbol{x}^{k} \right\| + \rho \eta b + \rho \eta n \sigma \end{aligned}$$

where $b^2 \triangleq \frac{1}{n} \sum_{i=1}^{n} \|\nabla f_i(x) - \nabla f(x)\|^2$ and L is the smoothness.

Evolution of DSGD

■ Letting $\bar{\mathbf{x}}^{k+l} = \frac{\mathbf{1}\mathbf{1}^T\mathbf{x}^{k+l}}{n}, \ell = 1/2, 0$, partial averaging in DSGD:

$$\|\mathbf{x}^k - \bar{\mathbf{x}}^k\| \le (2\rho\eta L)^k \|\bar{\mathbf{x}}^k - \mathbf{x}^k\| + \frac{\rho\eta(b + n\sigma)}{1 - 2\rho\eta L} \to 0$$
 when $\eta \to 0$

where $b^2 \triangleq \frac{1}{n} \sum_{i=1}^{n} \|\nabla f_i(x) - \nabla f(x)\|^2$ and L is the smoothness.

Convergence rate of DSGD

Assumptions:

- \bullet f_i : L-smooth
- $\nabla F(\mathbf{x}; \xi_i)$ is an unbiased estimate of $\nabla f_i(\mathbf{x})$, with bounded variance
- Bounded data heterogeneity: $\frac{1}{n} \sum_{i=1}^{n} \|\nabla f_i(x) \nabla f(x)\|^2 \le b^2$.

Theorem 1 (Convergence rate of DSGD)

Suppose above assumptions hold and let $\eta = 1/\sqrt{K}$. Then

$$\frac{1}{K} \sum_{k=1}^{K} \mathbb{E}[||\nabla f(\bar{\boldsymbol{x}}^k)||_2^2] \leq \mathcal{O}\left(\frac{\sigma}{\sqrt{nK}} + \frac{\rho^{2/3}\sigma^{2/3}}{K^{2/3}(1-\rho)^{1/3}} + \frac{\rho^{2/3}b^{2/3}}{K^{2/3}(1-\rho)^{2/3}}\right)$$

Convergence of DSGD

Theorem 1 (Convergence rate of DSGD)

Suppose above assumptions hold and let $\eta = 1/\sqrt{K}$. Then

$$\frac{1}{K} \sum_{k=1}^{K} \mathbb{E}[||\nabla f(\bar{\boldsymbol{x}}^k)||_2^2] \leq \mathcal{O}\left(\frac{\sigma}{\sqrt{nK}} + \frac{\rho^{2/3}\sigma^{2/3}}{K^{2/3}(1-\rho)^{1/3}} + \frac{\rho^{2/3}b^{2/3}}{K^{2/3}(1-\rho)^{2/3}}\right)$$

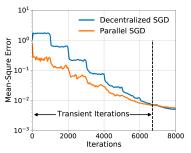
- The first term dominates when $K \to \infty$, which suggests DSGD achieves *linear speedup* asymptotically.
- Convergence of DSGD depends on the *network topology*: sparse topology $(\rho \rightarrow 1)$ results in slower convergence.
- Convergence of DSGD depends on the *data heterogeneity*: large heterogeneity *b* results in slower convergence.

PSGD v.s. DSGD

PSGD:
$$\mathcal{O}\left(\frac{\sigma}{\sqrt{nK}}\right)$$

PSGD: $\mathcal{O}\left(\frac{\sigma}{\sqrt{nK}}\right)$ Transient iterations: Extra overhead $\leq \frac{\sigma}{\sqrt{nK}}$

DSGD:
$$\mathcal{O}\left(\frac{\sigma}{\sqrt{nK}} + \left[\frac{\rho^{2/3}\sigma^{2/3}}{K^{2/3}(1-\rho)^{1/3}} + \frac{\rho^{2/3}b^{2/3}}{K^{2/3}(1-\rho)^{2/3}}\right]\right)$$



- DSGD can asymptotically converge as fast as P-SGD
- Transient iterations:

$$\mathcal{O}\left(\frac{\rho^4 \mathit{n}^3}{\sigma^2 (1-\rho)^2} + \frac{\rho^4 \mathit{n}^3 \mathit{b}^4}{\sigma^6 (1-\rho)^4}\right)$$

affected by *network topology* and data heterogeneity.

Summary of DSGD

- Principle: In each time step, nodes update its state by local SGD and communicate with its neighbors to perform partial averaging.
- **Benefit:** Low per-iter. communication cost when graph is sparse; achieve consensus asymptotically.
- **Drawback:** Cannot handle heterogeneous data setting.

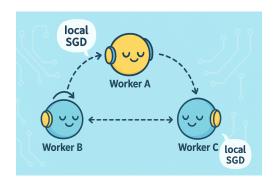


Table of Contents

Decentralized SGD: spatial communication reduction

Convergence of decentralized SGD

Gradient tracking: tackling data heterogeneity

Why DSGD suffers from data heterogeneity?

DSGD

$$egin{aligned} oldsymbol{x}_i^{k+rac{1}{2}} &= oldsymbol{x}_i^k - \eta \,
abla F(oldsymbol{x}_i^{(k)}; oldsymbol{\xi}_i^{(k)}) \ oldsymbol{x}_i^{k+1} &= \sum_{j \in \mathcal{N}_i} w_{ij} oldsymbol{x}_j^{k+rac{1}{2}} \end{aligned}$$

Consider the setting without gradient noise, DSGD can be written as

$$\mathbf{x}_{i}^{k+1} = \sum_{i \in \mathcal{N}_{i}} w_{ij} \left(\mathbf{x}_{i}^{k} - \eta \nabla f_{i}(\mathbf{x}_{i}^{(k)}) \right)$$

■ When achieving stationary: $\mathbf{x}_i^k = \mathbf{x}^*$ for all i. Then the next step is

$$oldsymbol{x}_i^{k+1} = \sum_{j \in \mathcal{N}_i} w_{ij} \left(oldsymbol{x}^* - \eta \,
abla f_i(oldsymbol{x}^*)
ight) = oldsymbol{x}^* - \eta \sum_{j \in \mathcal{N}_i} w_{ij}
abla f_i(oldsymbol{x}^*)$$

Why DSGD suffers from data heterogeneity?

■ In homogeneous scenario: $\nabla f_i(\mathbf{x}^*) = 0$ for all i. Then the stationary point \mathbf{x}^* is stable because

$$oldsymbol{x}_i^{k+1} = oldsymbol{x}^* - \eta \sum_{j \in \mathcal{N}_i} w_{ij}
abla f_i(oldsymbol{x}^*) = oldsymbol{x}^*$$

■ In heterogeneous setting: $\nabla f_i(\mathbf{x}^*) \neq \frac{1}{n} \sum_{i=1}^n \nabla f_i(\mathbf{x}^*) = \nabla f(\mathbf{x}^*) = 0$.

$$oldsymbol{x}_i^{k+1} = oldsymbol{x}^* - \eta \sum_{i \in \mathcal{N}_i} w_{ij}
abla f_i(oldsymbol{x}^*)
eq oldsymbol{x}^*$$

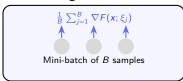
suggesting the stationary point is not stable.

■ Cause divergence when $b^2 \triangleq \frac{1}{n} \sum_{i=1}^{n} \|\nabla f_i(x) - \nabla f(x)\|^2$ is large.

Q: How to alleviate this issue?

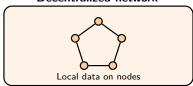
Insights from mini-batch SGD

Single Machine



Mini-batch SGD

Decentralized network



Decentralized SGD

- Gradient $\nabla f_i(\mathbf{x})$ for each node can be viewed as a "mini-batch" gradient with respect to the global gradient $\nabla f(\mathbf{x})$.
- Data heterogeneity $b^2 \triangleq \frac{1}{n} \sum_{i=1}^n \|\nabla f_i(x) \nabla f(x)\|^2$ is in the same spirit of "variance", but is for each worker.

A: Applying 'variance reduction' technique to local workers.

Recall: how SVRG reduces the variance

Key idea: SVRG replaces noisy gradients with a corrected version that re-centers them around the full gradient at a *snapshot point*.

- Periodically calculate the **full gradient** at a "snapshot" point \tilde{x} .
- Use this full gradient as a "low-variance anchor" to correct

$$\mathbf{v}_{\mathsf{SVRG}}^t =
abla f_{i_t}(\mathbf{x}^t) -
abla f_{i_t}(\mathbf{ ilde{x}}) +
abla f(\mathbf{ ilde{x}})$$

- f_{i_t} : gradient for the current random sample i_t .
- $\mathbf{\tilde{x}}$: snapshot point (updated every epoch).
- $\nabla f(\tilde{\mathbf{x}})$: full gradient at $\tilde{\mathbf{x}}$.

How to track the global gradient in decentralized setting?

Track the global gradient

Key idea: introduce additional variable y which converges to the global gradient when $\nabla f_i(\mathbf{x}_i^k)$ achieves stationary point.

- Initialize the tracking variable for each node as $\mathbf{y}_i^0 = \nabla f_i(\mathbf{x}_i^{(0)})$.
- Synchronize the smoothed version with neighbors

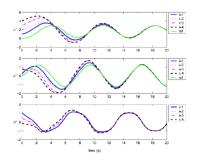
$$\boldsymbol{y}_{i}^{k+1} = \sum_{j \in \mathcal{N}_{i}} w_{ij} \left(\boldsymbol{y}_{j}^{k} + \nabla f_{j}(\boldsymbol{x}_{j}^{k+1}) - \nabla f_{j}(\boldsymbol{x}_{j}^{k}) \right)$$

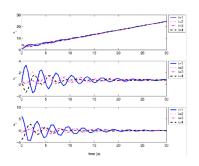
When each node reaches stationary, the gradient difference of two steps vanishes and

$$\mathbf{y}_i^{k+1} o \frac{1}{n} \sum_{i=1}^n \nabla f_i(\mathbf{x}_i^k) \leftarrow \text{global gradient}$$

Tracking variable converges to global gradient

■ Green: global gradient





■ Tracking variable converges to the global gradient

Gradient tracking algorithm

 Consider the general setting where we have gradient noise. Gradient tracking algorithm is defined as follows.

$$\begin{aligned} \boldsymbol{x}_{i}^{k+1} &= \sum_{j \in \mathcal{N}_{i}} w_{ij} \left(\boldsymbol{x}_{i}^{k} - \eta \boldsymbol{y}_{i}^{k} \right) \\ \boldsymbol{y}_{i}^{k+1} &= \sum_{j \in \mathcal{N}_{i}} w_{ij} \left(\boldsymbol{y}_{j}^{k} + \nabla F(\boldsymbol{x}_{j}^{k+1}; \xi_{j}^{k+1}) - \nabla F(\boldsymbol{x}_{j}^{k}; \xi^{k}) \right) \end{aligned}$$

■ **Key difference**: introduce a tracking variable that can converge to the global averaged gradient asymptotically

Convergence rate of Gradient Tracking

Assumptions:

- \bullet f_i : L-smooth
- $\nabla F(\mathbf{x}; \xi_i)$ is an unbiased estimate of $\nabla f_i(\mathbf{x})$, with bounded variance

Theorem 2 (Convergence rate of GT)

Suppose above assumptions hold and with proper η . Then

$$\frac{1}{K} \sum_{k=1}^{K} \mathbb{E}[||\nabla f(\bar{\mathbf{x}}^k)||_2^2] \le \mathcal{O}\left(\frac{\sigma}{\sqrt{nK}} + \frac{\rho^{2/3}\sigma^{2/3}}{K^{2/3}(1-\rho)^{1/3}}\right)$$

■ Key feature: remove the bounded data heterogeneity assumption!

DSGD v.s. Gradient Tracking

Extra overhead

DSGD:
$$\mathcal{O}\left(\frac{\sigma}{\sqrt{nK}} + \left[\frac{\rho^{2/3}\sigma^{2/3}}{K^{2/3}(1-\rho)^{1/3}} + \frac{\rho^{2/3}b^{2/3}}{K^{2/3}(1-\rho)^{2/3}}\right]\right)$$

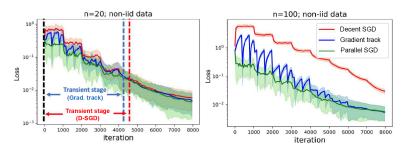
Extra overhead

GT:
$$\mathcal{O}\left(\frac{\sigma}{\sqrt{nK}} + \left[\frac{\rho^{2/3}\sigma^{2/3}}{K^{2/3}(1-\rho)^{1/3}}\right]\right)$$

- Gradient Tracking shorten the transient stage
- $\qquad \mathsf{DSGD:} \ \mathcal{O}\left(\frac{\rho^4 n^3}{\sigma^2 (1-\rho)^2} + \frac{\rho^4 n^3 b^4}{\sigma^6 (1-\rho)^4}\right) \longrightarrow \ \mathsf{GT:} \ \mathcal{O}\left(\frac{\rho^4 n^3}{\sigma^2 (1-\rho)^2}\right)$

Empirical studies on heterogeneous data

■ DNN training on ring graph $(1 - \rho = O(n^{-2}))$



- Gradient tracking has shorter transient period.
- Gradient tracking outperforms DSGD on heterogeneous data.

Recap and fine-tuning

- What we have talked about today?
 - ⇒ **Decentralized SGD** reduces spatial communication reduction via partial averaging with neighbors.
 - \Rightarrow **Decentralized SGD** achieves the same convergence rate as Parallel SGD asymptotically.
 - \Rightarrow Gradient Tracking tackles the data hetergenoity issue by tracking the global averaged gradient.

Welcome anonymous survey!

