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Review of Parallel SGD: synchronize every time

min £(x) = i;ff(xx where fi(x) = Eg.o,[F(x: €)].

Central server

gl = VF(x*; &) (Local compt.)
XL = xk ng,-k (Global comm.)
i-1

Local data on nodes

m All nodes synchronize (i.e., globally average) every time.

m Global average protocol: Ring-AllReduce or central server

Communication cost is O(n) which is high when n is large.
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Last-lecture: Compressed SGD

Compressed SGD: Each node i communicates its compressed gradient.

[ Global average g = % Z Q(g) ]

ez Qefz  eelr o)z
[Client 1] [Client 2] [Client 3] [Client 4]

gl.“ = VF(xk; §,k) (Local compt.)
X = Xk %Z Q(gF) (Global comm.)
i=1

m Compressed methods: quantization, sparsification

Reduce the communication cost by reducing the dimensionality.
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Last-lecture: Local SGD

Local SGD: Each node i performs 7-step SGD before averaging.

XD = ko) nVF(x,-(s); 555)), s=1,---,7 (Local updates)

n
k+1 1
xt =z E x7) (Global comm.)
n i=1
local steps communication communication

>8>0 >0>0>0 >0
O*O»OEQ»Q»OEQ
>0 ->0->0->0->0->0

Reduce the temporal communication cost by 7.
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Global averaging protocol: averaging over a graph

m Setup: A network of n nodes connected by a graph G = (V, ).
m Goal: Each node i has a copy of the average 1 "7 | x;(0).

n

° ° m Node set V:

V = {17 27374}
m Edge set &:

° e E= {(172)7(1»4)7(273)7(374)}

m Average consensus protocol:
xi(k+1) =Y wyx(k)
{:(i)eg}

)
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Global averaging protocol: averaging over a graph

Central server

== Reduce-scatter

= All gather

Local data on nodes

Central server: O(n) comm. cost.

Ring-AllReduce: O(n) latency

Both global averaging protocols require O(n) complexity.
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Moving beyond global averaging

Can we leverage Gossip to reduce the spatial communication cost?
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Neighbor set

m Setup: A network of n nodes connected by a graph G = (V, €).
° ° = Node set V:
YV =1{1,2,3,4}
m Edge set &:

° e &= {(172)7(1»4)7(273)7(374)}

= Neighbor set N, for node i
Ni=iu{j:(i.j) €&}
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Neighbor set

m Setup: A network of n nodes connected by a graph G = (V, ).

° o m Neighbor set V; for node 1:

N ={1,2,4}
= Neighbor set A, for node 2:
° e N, ={1,2,3}
m Neighbor set A for node 3:
Nz ={2,3,4}
m Neighbor set \; for node 4:

N = {1,3,4}
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Key idea of decentralized SGD

Instead of global averaging, partial averaging (gossip) with neighbors
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Example of decentralized SGD on the ring graph

m Consider the 4-node ring graph given above.

Decentralized SGD on the 4-node ring graph:

1. At time k, each node i runs the local SGD:

1
x 2 =X —nVF(x";e")
2. At time k, every node i sent its current state to its neighbors j € V.
3. Every node i update its state by partial averaging with its neighbors:

1 1 1
For {I,m,i} e N;: x**) = %xi(Hz) + %x,(k+2) + %x,(,f+2)

m Reduce the per-iteration comm. cost of PSGD from O(n) to O(1).

©)
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Review of weight matrix for the ring graph

m The weight matrix for the 4-node ring graph is static

1/3 1/3 0 1/3
1/3 1/3 1/3 0
0 1/3 1/3 1/3

° e 1/3 0 1/3 1/3

= W is doubly stochastic (1"W =17 and W1 =1).

W =

m (Deterministic) Gossip: reach consensus

m Adding more edges to the graph can improve the consensus rate
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More graph topologies

m Decentralized SGD can be defined for all undirected graphs.

Ring graph: every node has 2

. Every node has 3 neighbors.
neighbors
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Decentralized SGD: partial averaging via gossip

m DSGD: local SGD + partial averaging with neighbors

Decentralized SGD (DSGD)
Given a communication graph G = (V, £), at each round k,
1. Each node i runs the local SGD:

(k+3)
X;

= x — n VF(x"); €M)

2. Each node i broadcasts its current state to its neighbors j € A/;.
3. All nodes update their states by partial averaging with neighbors

1
k41 k+5
X; i E Wi X; 2

JEN;

l DSGD reduces the spatial comm. cost when the graph is sparse.
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DSGD has lower per-iter comm. cost than PSGD

m Experiment on a 256-GPU cluster. Use Ring-AllReduce as global
averaging protocol for PSGD.

Model Ring-AllReduce (ms) Partial Averaging (ms)
ResNet-50 (25.5M) 278 150

Table: Per-iteration communication runtime (lower is better [1]).

m 46% reduction vs. PSGD.

[1] Y. Chen, K. Yuan, Y. Zhang, P. Pan, Y. Xu, and W. Yin, “Accelerating Gossip SGD with
Periodic Global Averaging , ICML 2021.
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DSGD is more communication-efficient than PSGD

m DSGD (BlueFog) has better scalability than PSGD (Horovod) due to
its small comm. overhead.

P3.16xlarge/25 Gbps/ResNet50/64 batch size

Framework
40000 wem Horovod

P3.16xlarge/25 Gbps/ResNet50/32 batch size

40000 Framework
m= Horovod
= BlucFog

== BlueFog

20000

Total img/sec
Total img/sec
~
S
38
S
5

Small comm.-to-compt. ratio Large comm.-to-compt. ratio

[2] B. Ying, K. Yuan, H. Hu, Y. Chen and W. Yin, BlueFog: Make decentralized algorithms
TH tical for optimization and deep learning, arXiv: 2111. 04287, 2021
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Summary of DSGD

Key idea: Instead of global averaging, partial averaging with neighbors

k+3
x; ?

= xf —nVF(xf; ¢f)

k41 _ j{: kT
X,- = Wij

JEN;

DSGD

m Each node i samples mini-batch ¢ and computes VF(X-’" k)

i Si)

m Nodes synchronize with its neighbors.

Benefit: Reduce comm. cost to O (dmax) Where dmax = max; {|NV;|}.

How about its convergence?
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Quadratic objectives: setup and average dynamics

Consider local quadratic objectives

fi(x) = ix" Aix — b/ x,

and the decentralized update (no noise):

n

Xk = Z Wij<xj< —n(Apxk — bj)), where w; = 0 if j ¢ N

j=1

Define the (virtual) average x* = 1 3°7 | x¥, and if W is

column-stochastic (), w;; = 1), then
n
RS LY (A b))
j=1

e average iterate follows a global gradient-like step on local gradients.
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Quadratic objectives: gradient decomposition

We can decompose each local gradient around the average point:
k —k k <k
AXJ —bj:AjX —bj—‘rAJ(XJ — X )

Substituting into the update gives

n

)_(k+1 = )_(k —n |"17 Z(Aj)_(k - bj)] —n % ZAJ'(X — X
Jj=1

j=t

Define the consensus error term:

E, = %ZAJ-(X}‘ —x9)
j=1
Then xt=xk_pl Zw —nE.
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Quadratic objectives: interpretation

Hence the average iterate evolves as
n
Xk = gk W(i D VAR + Ek> .
i=1

If the matrices A; are uniformly bounded, say ||A;|| < L, then

n
k ok k ok
IEl < 3> I Ixf = %) < L max |xf — %¥].
i=1

The virtual consensus point follows a gradient step on the global objective
% >~ f;, up to an error proportional to the consensus disagreement.

m Column-stochasticity (3, wj; = 1) preserves the average.
m The consensus error ||E|| decays with the spectral gap 1 — Ap(W).

Faster consensus =- smaller error = near-centralized convergence.
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Does DSGD ensure convergence?

Convergence of DSGD depends on the consensus rate of the
partial averaging and the convergence of PSGD.
m The consensus rate depends on the graph topology.

® The fully connected graph reaches the consensus after one-step
averaging.
® For a ring graph, although not exact consensus, still closer.

m PSGD can tolerate inexact consensus if the error is decreasing.

Convergence guarantee? Speed?

ECE 5290/7290 & ORIE 5290
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Partial averaging as one-step average consensus

m Write the DSGD in the matrix form.

k+3 k (k). #(k)
x; 2=x—nVF(x;"; &)
DSGD '
k1 ka+%
where x' =[x, -+, xl], I=kk+1

m Recall average consensus algorithm (fixed weight matrix)
x(t+1) = Wx(t) = W'x(0)

m The partial averaging in DSGD is one-step (t = 1) version of
average consensus algorithm with varying x(0) = xk+3
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Review: Convergence rate of consensus

m Recall the average consensus algorithm (fixed weight matrix)

x(t+1) = Wx(t) = W'x(0)

Theorem 1 (Convergence rate of average consensus)

If W is doubly stochastic, it holds for the average consensus protocol that

11Tx(t) 117x(0)

n

X(O) - s

o

E

where p = max;>2 |\i(W)| < 1.
Q: Is one-step consensus enough for DSGD's convergence?

©)
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Evolution of DSGD

min f(x) = Z fi(x where fi(x) = E¢,~p,[F(x;&)] .

x€RY

m DSGD converges if partial averaging reaches consensus (global
average) asymptotically

m Letting Xt/ = HT o ,£ =1/2.0, partial averaging in DSGD:

3+t — =H| < p HXH% _ )-(k+§‘

n
<my,
i=1

+ pnno

1 n
V() = > Viilx
i=1

ECE 5290/7290 & ORIE 5290 26/ 44



Evolution of DSGD

1T k+1

m Letting x¥ ,£=1/2,0, partial averaging in DSGD:

[t — 4|
VE(xF) - %Zw,-(x
i=1
<o Y| VA = VA +on Y [ VAEF) = VAL
i=1 i=1
lzn:w-(x.k) — 1i:w(;(k)
n i=1 o n i=1 o

< 2pnL||x* — x*|| + pnb + pyno

+ pnno

+ pnno

where b2 2 1577 ||Vfi(x) — Vf(x)||” and L is the smoothness.
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Evolution of DSGD

. - T Jk+1 . . .
m Letting Xt/ = u+,£ =1/2,0, partial averaging in DSGD:

pn(b + no)

o = %4 < @omt)*|Ix = x|+ 5

— 0 when n—0

where b2 2 1577 ||Vfi(x) — Vf(x)||* and L is the smoothness.
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Convergence rate of DSGD

Assumptions:
m f;: L-smooth

m VF(x;&;) is an unbiased estimate of Vf;(x), with bounded variance
® Bounded data heterogeneity: 1 S°7_ [|Vfi(x) — Vf(x)|* < b2.

Theorem 1 (Convergence rate of DSGD)

Suppose above assumptions hold and let n = 1/\/? Then

2/3 2/3 p2/3b2/3
33 BV < 0 (2 + s s + o)

©)
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Convergence of DSGD

Theorem 1 (Convergence rate of DSGD)

Suppose above assumptions hold and let n = 1/\/W Then

ZE[HW NBI <O (Lt o T o
K 2 /T( K2/3( )3 T K2B(1 - p)2/3

m The first term dominates when K — oo, which suggests DSGD
achieves linear speedup asymptotically.

m Convergence of DSGD depends on the network topology: sparse
topology (p — 1) results in slower convergence.

m Convergence of DSGD depends on the data heterogeneity: large
heterogeneity b results in slower convergence.

ECE 5290/7290 & ORIE 5290
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PSGD v.s. DSGD

o
PSGD: O Transient iterations: Extra overhead < —Z
(1 /nK> = VnK
Extra overhead
2/3 _2/3 2/3p2/3
DSGD: O( A + L )
VoK | KB =) K= PP
10t . m DSGD can asymptotically
— Effa’“}.”;'g'gsd >0 converge as fast as P-SGD

m Transient iterations:
o ot 3 N ot n3h*
o?(L=p)*  o®(1—p)*

| | | affected by network topology
° 2000 ertions 0 800 and data heterogeneity.

Mean-Squre Error

<«——Transient lterations—»
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Summary of DSGD

m Principle: In each time step, nodes update its state by local SGD
and communicate with its neighbors to perform partial averaging.

m Benefit: Low per-iter. communication cost when graph is sparse;
achieve consensus asymptotically.

m Drawback: Cannot handle heterogeneous data setting.

local
SGD
% -2 N i
’ Ry
g Worker A \
/N
€-mmmmmmmeo >
Worker B Worker C [ocal

SGD
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Why DSGD suffers from data heterogeneity?

X =t VF(M )

1

DSGD

1
k+1 k3
x = E Wi X;

JEN;

m Consider the setting without gradient noise, DSGD can be written as

Xt =3 wy (xf = VAG))

JEN;

m When achieving stationary: xX = x* for all i. Then the next step is

xkl = Z wij (x* —nVfi(x*)) =x"—n Z w;iV1i(x™)
JEN; JEN;

ECE 5290/7290 & ORIE 5290
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Why DSGD suffers from data heterogeneity?

m In homogeneous scenario: V£;(x*) = 0 for all i. Then the stationary
point x* is stable because

XM= x* —p Z w;VEi(x*) = x*
JEN;

m In heterogeneous setting: V£(x*) # 13" | Vfi(x*) = Vf(x*) = 0.

xf = x* Z w; VEi(x*) # x*
JEN;

suggesting the stationary point is not stable.

m Cause divergence when b? £ 137 || Vfi(x) — VF(x)|? is large.

Q: How to alleviate this issue?
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Insights from mini-batch SGD

Single Machine Decentralized network

5 S VF(x:€)

A

Mini-batch of B samples
Local data on nodes

Mini-batch SGD Decentralized SGD

m Gradient Vf;(x) for each node can be viewed as a "mini-batch"
gradient with respect to the the global gradient V(x).

= Data heterogeneity b> £ 1 57 | Vfi(x) — VF(x)||” is in the same
spirit of "variance", but is for each worker.

A: Applying 'variance reduction’ technique to local workers.

P 36 /44
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Recall: how SVRG reduces the variance

Key idea: SVRG replaces noisy gradients with a corrected version that
re-centers them around the full gradient at a snapshot point.

m Periodically calculate the full gradient at a "snapshot" point x.

m Use this full gradient as a "low-variance anchor" to correct

Vsvrg = Vfi(x") — Vi (%) + VF(%)

f,.: gradient for the current random sample /.

X: snapshot point (updated every epoch).
V£(x): full gradient at X.

How to track the global gradient in decentralized setting?

)
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Track the global gradient

Key idea: introduce additional variable y which converges to the global
gradient when V£(xX) achieves stationary point.

(0))_

m Initialize the tracking variable for each node as y? = Vf(x;

m Synchronize the smoothed version with neighbors
Y= D wy () + V() = Vh(x))
JEN;

m When each node reaches stationary, the gradient difference of two
steps vanishes and

1 n
k+1 k .
: — i\ X; lobal d t
Yy, — ’El Vii(x) + global gradien

©)
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Tracking variable converges to global gradient

m Green: global gradient

10

me ls)

m Tracking variable converges to the global gradient

Simulation results are from [Ren IEEE TAC 2007]
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Gradient tracking algorithm

m Consider the general setting where we have gradient noise. Gradient
tracking algorithm is defined as follows.

=7 wy (xf —nyf)
JEN;
Y=Y wy (vf + VR - VE(xf; €9)
JEN;

m Key difference: introduce a tracking variable that can converge to
the global averaged gradient asymptotically

@
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Convergence rate of Gradient Tracking

Assumptions:
m f;: L-smooth

m VF(x;&;) is an unbiased estimate of Vf;(x), with bounded variance

Theorem 2 (Convergence rate of GT)

Suppose above assumptions hold and with proper 7. Then

p?/352/3
ZE[HW I <0 (= + st oo )

m Key feature: remove the bounded data heterogeneity assumption!
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DSGD v.s. Gradient Tracking

Extra overhead

2323 2/32/3
DSGD: O(\/? K2/3( p)/3 + K23(1 — p)?/3 )
Extra overhead
2323
GT: O<\/T(+ K2/3(1— )1/3)

m Gradient Tracking shorten the transient stage

= DSGD: O (S + its) — GT: O (42
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Empirical studies on heterogeneous data

= DNN training on ring graph (1 —p = 0 (n7?))

n=20; non-iid data n=100; non-iid data
10°4 1 [
1 —— Decent SGD
: : —— Gradient track
1 i 10° —— Parallel SGD
10714 | [N
” 1 11
1
g i \ . £
i i -
10724 Transient stage B
1 (Grad. track) 11
1 I 1072
1 Transient stage _j |
w02l (D-SGD) (L]
0 1000 2000 .3000; ;400D :5000; 6000 “7000; (800D 0 1000 2000 3000 4000 5000 6000 7000 8000
iteration iteration

m Gradient tracking has shorter transient period.

m Gradient tracking outperforms DSGD on heterogeneous data.

Simulation results are from [Ren IEEE TAC 2007]
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Recap and fine-tuning

m What we have talked about today?

= Decentralized SGD reduces spatial communication reduction via
partial averaging with neighbors.

= Decentralized SGD achieves the same convergence rate as
Parallel SGD asymptotically.

= Gradient Tracking tackles the data hetergenoity issue by tracking
the global averaged gradient.

N
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