Distributed Optimization for Machine Learning

Lecture 15 - Communication-efficient Distributed Training - Part Il

Tianyi Chen

School of Electrical and Computer Engineering
Cornell Tech, Cornell University

October 20, 2025

()~

eopm™

A \J

Table of Contents

Reduce the Number of Bits via Sparsification

ECE 5290/7290 & ORIE 5290 2/39

Sparsification

Goal: Reduce num of communicated entries by making vectors sparse.

Q: What is sparse?
= Quantization:
[s2bit] I I | | | I |

0 0 0 0 0 0 0

log; s bit

m Sparsification:
[(320bit I I | I I I |

[(32bit | I I | I I I |

Idea: Communicate only a few coordinates and set the rest to zero.

ECE 5290/7290 & ORIE 5290 3/ 39

Stochastic sparsification

For any v € RY, define a sparsified vector Q(v) coordinate-wise by:

ﬁ, with probability pj,

Q)] =< Pi j=1,...,d.
0, with probability 1 — p;,

Let p=(p1,...,Ppd) be a predetermined probability vector belonging to a
: d
simplex (p; € (0,1], >/, pj = 1).

@

ECE 5290/7290 & ORIE 5290

4/ 39

Performance of stochastic sparsification

Lemma. For v € RY and a sparsified vector Q(v), it follows that
(i) Unbiasedness: E[Q(v)] =v since E[[Q(v)];] = P =Y

(i) Variance bound: E[||Q(v) — v||3] < max; I%J_pj||v||§

Wang, H., Sievert, S., Liu, S., Charles, Z., Papailiopoulos, D., and Wright, S. Atomo:
Communication-efficient Learning via Atomic Sparsification, NeurlPS 2018

@

ECE 5290/7290 & ORIE 5290 5/ 39

Deterministic sparsification

D1) Threshold-based rule

For any v € R9, denote the sparsified vector Q(v).

v, if [y] >,

[Q(V)]; = ~ : predefined threshold.

0, otherwise,

Idea: Only transmit coordinates whose magnitudes exceed 7.

@

ECE 5290/7290 & ORIE 5290

6/ 39

Deterministic sparsification

D2) Memory-based threshold rule
If the algorithm transmits:

Original: v)R

Sparsified: Q(v(?), Q(vY), ..., Q(v{F))

Initialize: v(® = v(0.
For k=0,1,...,K—1:
SR oK)
[Q(v(k))]J _ i if |VJ | 2 e

0, otherwise.

plktD) — y(k+1) 4 (;,(k) _ Q(V(k))),

d For
ECE 5290,/7290 & ORIE 5290

7/ 39

Deterministic sparsification

r—

<= >{lewo,

Memory Vj(k)

For k=0,1,..., K—-1:

i [>,

ECE 5290/7290 & ORIE 5290

8/ 39

Deterministic sparsification

D3) Top-k sparsification rule*

Consider w € RY as a permutation of {1,2,...,d} such that for v € R,
Va@)l > V@) = - > Vel

Then the j-th entry of the sparsified vector is:

vj, if j=m(j)and j <k,

0, otherwise.

[Q(v)]; = {

Stich, S.U., Cordonnier, J.-B., and Jaggi, M. Sparsified SGD with Memory, NeurlPS
2018

ECE 5290/7290 & ORIE 5290 9/ 39

Deterministic sparsification

D3) Top-k sparsification rule*

Qi1(v) = (5,0,0,0,0)"]

[v=(5,-2,0,-1,3)"]—‘[Top-k Compressor Q.

Qa(v) = (5,0,0,0,3) "

Q(i(v> = (51 —2,0,0, 3)
The error due to sparsification:

k
1Qe(v) = vI3 < (1= Z)Ivi3.

Stich, S.U., Cordonnier, J.-B., and Jaggi, M. Sparsified SGD with Memory, NeurlPS
18

ECE 5290/7290 & ORIE 5290 10/ 39

Implementation of quantized / sparsified gradient descent

For iteration k=1,2,..., K:
1. Server broadcasts the current model parameter x* to all workers.
2. For each worker i =1,2,...,n (in parallel):
Worker i calculates v,-(k) = VFi(x").
Worker i computes sparsified/quantized gradient Q(v,-(k)).
Worker i uploads Q(v,(k)) to the server.

3. Server updates the global model:

Remark: Quantization / sparsification can be performed either at the
server side or at the worker side or both.

ECE 5290/7290 & ORIE 5290 11/ 39

Table of Contents

Reduce the Number of Workers Per Round

ECE 5290/7290 & ORIE 5290 12/ 39

Reduce the number of workers

Goal: Reduce the number of workers participating in communication.

~

Central server

~

Local data on nodes

ECE 5290/7290 & ORIE 5290

13/ 39

Methods for worker selection

Idea: Only a subset of workers upload/download gradients at each

round, based on either fixed (nonadaptive) or dynamic (adaptive) rules.

Randomized

/

Nonadaptive

T

Selection Rule Cyclic

T~

Adaptive — Active research

ECE 5290/7290 & ORIE 5290

14/ 39

Non-adaptive randomized rule

For iteration k=1,2 ... K:
S1) Server randomly selects worker ix € {1,...,n} (or a set
T, C{1,...,n}), and sends x* to worker i, (or all i € Zj).
1. Worker ix computes and uploads VF;, (x*).
2. Server updates x* via:
Option | (SGD):
XK = xk — aVF, (x¥).
Option Il (Randomized Incremental Aggregated Gradient (RIAG)):

X, i= ika
xk1 = { P XKt = xk — aVF, (x*) -« g VFi(x
X, 7£ s iix

ECE 5290/7290 & ORIE 5290 15/ 39

Memory overhead for RIAG

If the server pursues Option Il, it stores a table € RI*".

VF | VR | VE

VF,

Overcome memory overhead:

Store the summation V4 = >, VF;(x)).
Worker uploads only the change of gradients:

i = VF(x) = VF(xf).
Server updates the summation via:

Vis1 = Vi + Vi.

S

)

ECE 5290/7290 & ORIE 5290

Central server

Local data on nodes

16/ 39

Non-adaptive cyclic rule

For k=1,2,...,K:
1. Server selects worker i, = k mod n.
2. Server sends x¥ to worker i.
3. Worker i, computes and uploads V F;, (x).
4. Server updates x* via Option | or Il.

/

CIAG: Cyclic Incremental Aggregated Gradient

©)

ECE 5290/7290 & ORIE 5290

Central server

Local data on nodes

17/ 39

Theoretical guarantees of CIAG

Theorem 3 (Convergence of CIAG)

Under the L-smooth and p-strongly convex assumption, if the stepsize «
in CIAG satisfies:

0<a< ——,
~ n(p+ L)
then CIAG achieves an R-linear convergence rate:

[x* — x*||3 < p¥||x° — x*||2, for some 0 < p < 1.

ECE 5290/7290 & ORIE 5290 18/ 39

Plan: adaptive worker selection

Compare: Gradient Descent vs. RIAG/CIAG

Tradeoff Factors:
(c1) Amount of communication per iteration

(c2) Number of iterations required for convergence

Observation:

RIAG/CIAG = + communications as GD (fewer uploads per iteration),

S 3=

GD = = iterations as RIAG/CIAG (faster convergence per round).

Total Communication Cost:

Total communication rounds = (c1) x (c2).

ECE 5290/7290 & ORIE 5290 19/ 39

Methods for worker selection

Idea: Only a subset of workers upload/download gradients at each

round, based on either fixed (nonadaptive) or dynamic (adaptive) rules.

Randomized

/

Nonadaptive

T

Selection Rule Cyclic

T~

Adaptive — Active research

ECE 5290/7290 & ORIE 5290

20/ 39

Adaptive worker selection - best tradeoff

A slight generalization of Incremental Aggregated Gradient (IAG):

XK1 = xk — o Z VFi(x¥) —a Z VFi(xF),

i€k i¢Tk

Special cases:

m RIAG (Randomized IAG): Z¥ = {i;}, with ix randomly generated.

m CIAG (Cyclic IAG): ¥ = {k mod n}.
m GD (Full Gradient Descent): 7 = {1,2,...,n}.

©)

ECE 5290/7290 & ORIE 5290

21/ 39

Incremental aggregated gradient

Xk = xk _ o Z VFi(x*) — Z VFi(xF)

i€Tk i¢Tk

—xk _ ai‘; VFi(x*) +a Z (VF,-(x") — VF,-(x,-k))

i¢ Tk

GD update Sk

Error of using old gradients: §%

Intuition: If [|6%|| are small relative to >, [[VF:(x¥)]|, then the price
paid for saving uploads/downloads is small.

ECE 5290/7290 & ORIE 5290 22/ 39

Incremental aggregated gradient

Question: The intuition is good but how to quantify small?

af = gk — VF(2b)
semeres LI IO
xk/ ok

Workers DD
L

ECE 5290/7290 & ORIE 5290 23/ 39

Toward adaptive worker selection

Design an adaptive selection rule by analyzing the IAG iteration.

Lemma (IAG)

Under the L-smooth assumption of F(x) = 13" | Fi(x), x**1 is
generated by performing one-step generic IAG update given x* and
{xk}n_,, then:

F(x41) = F(x) < =S IVF(I3 + 5 > o

L 1 k+1 k|2
+ (3755) It = 1B

Lo VAR o HZak

ECE 5290/7290 & ORIE 5290

7
ACIAG'

24/ 39

Communication principle

Lemma (GD)

Under the same L-smooth assumption, the one-step GD update satisfies:

F(x*1) — F(x4) < - [VF(e)[B 2 Ak,

Principle: Larger progress per communication:

N _ B
IZK ~ n
Plugging AX and AK,. leads to:

~BIVFON)P + 5 S 10K~ Z V()2
7 =T

ECE 5290/7290 & ORIE 5290 25/ 39

Deriving the sufficient condition for the principle

I VFON® + 57 izt 071 _ =3 IVFOA)I?
|ZX] - n

=[5

ig Tk

“< (1= B iwreer

n

A

By Cauchy-Schwarz inequality, ||a1 + a + -+~ + a,[|> < nd>_7, ||ai]?,

holds that:
2
5.kH<(fI") 5?2<<f1’<) K2,
| 38k < (n=1241) Do U8k < (n—12*1) nmax 6 |
i¢Tk i¢Tk

ECE 5290/7290 & ORIE 5290

26/ 39

Deriving the sufficient condition for progress principle

Sufficient Condition for the Principle:
_ | Tk
(n— 124 nmax £ < "L o F (e 2.
igTk n

1

k2
— ||5l || < a2n?

Q: How can we check this condition either at the server or at worker?
n 2
IVE()I2 = || 2 vRG)|
i=1
This cannot be computed locally.

,@@

ECE 5290/7290 & ORIE 5290

IVF(x¥)|]?, foralliec{1,...,n}.

27/ 39

Checking the sufficient condition

Approximation:
ky |12 Lok k=12
IV = 5 lx = x|

so that each worker can check condition locally by:

1
165 < W”Xk — x*"Y2 (Worker side)

Q: What if we find an upper bound on the left-hand side?

IVFi(x*) = VFi(x)]| < Lillx* = xf|

i

A sufficient condition rule is:

1 _ .
L2]|x* — xK||? < WHX" — x*7Y12 (Server side)

ECE 5290/7290 & ORIE 5290 28/ 39

Implementation of adaptive selection rule (LAG)*

Worker side:
For iteration k=1,2,... K:
1. Server broadcasts the current model parameter x to all workers.
2. For each worker i =1,2,... n (in parallel):
Worker i computes the local gradient V F;(x).
Worker i checks the upload condition:

Kip2 1 K _k—1y2
llo:°1l SWHX = x5

If the condition is satisfied = Do not upload.
Otherwise = Upload.

3. Server updates the global model via the generic IAG update rule.

Chen, T., Giannakis, G., Sun, T., and Yin, W. LAG: Lazily Aggregated Gradient for
Communication-efficient Distributed Learning, NeurlPS 2018

ECE 5290/7290 & ORIE 5290 29/ 39

Implementation of adaptive selection rule (LAG)*

Server side:
For iteration k=1,2 ... K:
1. Server checks the condition for each worker i =1,2,...,n:

1 _
LIk — x| < —5lxk — xR

2. Collect all violating workers into the set Z*.
3. Server sends the current model x* to all i € Z*.
4. For each worker j € T*:
Worker i computes and uploads V F;(x¥) to the server.

5. Server updates the global parameter x**!

update rule.

via the generic IAG

Chen, T., Giannakis, G., Sun, T., and Yin, W. LAG: Lazily Aggregated Gradient for
Communication-efficient Distributed Learning, NeurlPS 2018

ECE 5290/7290 & ORIE 5290 30/ 39

Theoretical guarantee of LAG

Theorem 4 (Convergence of LAG)

1. Under the L-smooth assumption of F;(x), we have:

o 1
e Z |VF(x¥)||> = (K) (Same as GD)
k=1

2. Under the additional convex assumption, we have:

F(x¥) - F(x*) = O<;1<> (Same as GD)

3. Under the additional p-strong convexity assumption, we have:

F(x*) — F(x*) = o((1- %)k) (Same as GD)

ECE 5290/7290 & ORIE 5290

31/ 39

Empirical performance of LAG

Objective error

m Faster convergence per iteration: LAG achieves similar or faster

convergence compared with IAG and GD in terms of iteration

complexity.

m Significantly reduced communication cost: LAG requires fewer
communication rounds while maintaining accuracy.

S

10

=2 uCyc-1AG
= Num-IAG|

e, = LAG-PS

W,
NS —LAG-WK
D — Batch-GD|
NN
AN
N,
\ ",
AN N,
.,
N "%,
Y e,
AN
\ x%,
\ .
\ ey,
N e,
0 1000 2000 3000 4000 5000

Number of iteration

Objective error

== 1CycIAG
— Num-IAG|
— LAG-PS

—LAG-WK
— Batch-GD

10!

102 10° 10
Number of communications (uploads)

Figure: lteration and communication complexity for linear regression.

ECE 5290/7290 & ORIE 5290

32/ 39

Worker-side condition in LAG (setup)

Goal: Show that Lazy Aggregated Gradient (LAG) still guarantees
descent even when workers communicate intermittently.

Worker update condition:

¢

K k—
165117 < Py xKH2,

Ix* —
here 6% = VF;(x¥) — VF;(x*
where 67 = VFi(x/) (x5).
Intuition:
m 5 measures how “stale" a worker's gradient is.
m Larger (= easier condition = fewer communications.
m When local changes are small, workers can skip communication.

ECE 5290/7290 & ORIE 5290 33/ 39

Step 1: One-step progress of LAG

Under L-smoothness of F, the descent lemma gives:

F(x1) = F(x*) < (VF(x*), X — x5 + St — xK)2,

=

Substitute the LAG update rule:

X =x"_a Z VF(x*) —a Z VFi(x}).

i€k i¢Tk

This introduces gradient mismatch terms 8% from lazy workers.

ECE 5290/7290 & ORIE 5290

34/ 39

Bounding the inner product term (sketch)

Plugging the update into the inner product:

(TF(), © = %) = —al VE) P — o VF(), 3 oF).

i¢Tk

Using the identity 2a” b = ||a||? + ||b||> — ||]a — b||?, we bound the cross term:

(VF(x), S8t < HVF 92 +2HZ¢skH

i¢ Ik
Result:

L
FOH) = F) < = SIVFGOIP + 5 D0 18K + 5 1x = <
ig Ik

ECE 5290/7290 & ORIE 5290 35/ 39

Step 2: Apply worker-side condition

Applying the worker condition to bound the error term gives:
Flx*1Y — F(x¥) < — LI F(x9)|12 Gk k=112
(¢“41) = F(x) < = SIVFO) P 4+ 5 = 7
Takeaway:

m The first term guarantees descent.

m The second term captures accumulated gradient staleness.

m Properly tuning ¢ keeps LAG stable and communication-efficient.

ECE 5290/7290 & ORIE 5290

36/ 39

Understanding the tradeoff

Key tradeoff:

Descent rate vs. Error from delayed gradients.

If ¢ is too small = frequent communication but stable. If { is too large =
fewer communications but possible instability.

Balance point: choose (=1 — al so that:

Error term ~ Descent term.

This ensures that each step still decreases F(x) in expectation.

&

ECE 5290/7290 & ORIE 5290 37/ 39

Step 3: Convergence sketch

Choose: (=1 — aL to balance descent and error.

Telescoping over k =1,... K:

K 2 o FO) = F(x)
?gnw WP s =

Result:

LAG achieves O(1/K) convergence‘

- the same as parallel GD, but with significantly fewer communications.

(Idea: smoothness = gradients evolve slowly = lazy communication.)

ECE 5290/7290 & ORIE 5290 38/ 39

Recap and fine-tuning

m What we have talked about today?

= Sparsification reduces communication cost by transmitting
gradients with fewer entries.

= Worker selection reduces communication cost by letting only a
subset of workers upload gradients adaptively.

Welcome anonymous survey!

N
(“gg
®:

	Reduce the Number of Bits via Sparsification
	Reduce the Number of Workers Per Round

