
Distributed Optimization for Machine Learning
Lecture 14 - Communication-efficient Distributed Training - Part I

Tianyi Chen

School of Electrical and Computer Engineering
Cornell Tech, Cornell University

October 15, 2025

ECE 5290/7290 & ORIE 5290 2/ 32

Example: air pollution prediction in smart cities

There is a community of multiple houses, where each house has a smart
sensor that records environmental information.

Each house collects data pairs ξn = {an,bn} over time, where:

an = (temperature, humidity, time, location, etc.)

bn = concentration of a particular pollutant.

ECE 5290/7290 & ORIE 5290 3/ 32

Motivation of distributed training

Goal: All houses want to collaboratively train a machine learning model
to predict future b given a:

b = h(x; a)

where x denotes the model parameters to be learned.

ECE 5290/7290 & ORIE 5290 4/ 32

Example: next-word prediction on smart keyboards

Each smartphone collects sequences of
words typed by the user.

an = Vec

 current word
...
past word

 ,

bn = Vec(next word) .

Here, Vec(·) denotes the Word-to-vector
embedding operation.

Goal: Learn a model h(x; a) to predict
the next word embedding:

b = h(x; a)

ECE 5290/7290 & ORIE 5290 5/ 32

Why perform distributed training?

Key question: Why distributed data?

Main reason: Privacy!
Each house may not want to share its raw sensor data with others or
with a central server.
Instead, they exchange only model updates or gradients to preserve
local data confidentiality.

Secondary reason: Bandwidth and latency!
Reduce communication overhead of transferring large datasets.
Enable real-time, edge-level learning across smart devices.

ECE 5290/7290 & ORIE 5290 6/ 32

Optimization formulation of data parallelism

A network of n nodes (such as mobile devices) collaborate to solve:

min
x∈Rd

f (x) = 1
n

n∑
i=1

fi(x), where fi(x) = Eξi∼Di [F (x; ξi)]

Each component fi : Rd → R is local and
private to node i .

Random variable ξi denotes local data
following distribution Di .

Di may be different ⇒ data heterogeneity.

Central server

Local data on nodes

ECE 5290/7290 & ORIE 5290 7/ 32

Parallel SGD: compute locally, communicate globally

min
x∈Rd

f (x) =
1
n

n∑
i=1

fi(x), where fi(x) = Eξi∼Di [F (x; ξi)] .

PSGD
gk

i = ∇F
(
xk ; ξk

i
)

(Local compt.)

xk+1 = xk − η

n

n∑
i=1

gk
i (Global comm.)

Each node i samples mini-batch ξk
i and computes ∇F

(
xk ; ξk

i
)
.

All nodes synchronize (i.e., globally average) to update x.

ECE 5290/7290 & ORIE 5290 8/ 32

Communication overhead of distributed training

Communication overhead:
Each entry of a d-dimensional vector (model or gradient) requires 32
bits by default float32 (IEEE 754 single-precision floating-point).
Each upload or download of the vector incurs:

Communication cost = 32 × d × n

where
• 32: bits per entry,
• d : number of dimensions (106 ∼ 1011),
• n: number of workers (103 ∼ 104).

⇒ Total communication per round = O(1010 to 1016) bits.

ECE 5290/7290 & ORIE 5290 9/ 32

Solutions to overcome communication overhead

Goal: Reduce the total communication cost per iteration:

32 × d × n

Possible solutions:

S1: Reduce the communication rounds:
e.g., Local SGD: perform τ local updates before synchronization to
reduce communication frequency while maintaining accuracy.

S2: Reduce the number of bits via quantization/sparsification:
e.g., Stochastic or deterministic quantization, threshold-based or
Top-k sparsification.

S3: Reduce the number of workers:
e.g., Randomized / cyclic and adaptive worker selection (LAG).

ECE 5290/7290 & ORIE 5290 10/ 32

Table of Contents

Reduce the Communication Rounds via Local SGD

Reduce the Number of Bits via Quantization

ECE 5290/7290 & ORIE 5290 11/ 32

Communication bottleneck in Parallel SGD

In Parallel SGD, workers synchronize after every step.
Comm. dominates runtime when n is large or network is slow.

Number of Workers K

Time per Iteration

Compute Time

Communication Time

Total Time

Communication
dominates for large K

ECE 5290/7290 & ORIE 5290 12/ 32

Idea: Local updates before synchronization

Key idea: Each node i performs several SGD steps before averaging.

x(s+1)
i = x(s)

i − η∇F (x(s)
i ; ξ

(s)
i), s = 0, . . . , τ − 1

where x(0)
i = xk . After every τ steps:

xk+1 =
1
n

n∑
i=1

x(τ)
i

Benefit: Reduces communication by a factor of τ .

ECE 5290/7290 & ORIE 5290 13/ 32

Mini-batch SGD vs. Local SGD
Mini-batch or Parallel SGD:

xt+1 = xt − ηt
1

nτ

n∑
i=1

τ∑
s=1

∇F (xt ; ξt,s
i)

Local SGD:

xt+1
i =

xt
i − ηt∇F (xt

i ; ξ
t
i), t mod τ 6= 0

1
n
∑n

i=1
(
xt

i − ηt∇F (xt
i ; ξ

t
i)
)
, t mod τ = 0

Method Mini-batch SGD Local SGD
Comm. rounds K K
Batch size nτ n
Model updates K τK
Gradient calcs nτK nτK

ECE 5290/7290 & ORIE 5290 14/ 32

Communication vs. computation trade-off

0 10 20 30 40 50 60
Local Steps Between Synchronizations ()

0.012

0.014

0.016

0.018
Co

nv
er

ge
nc

e
Er

ro
r

Trade-off in Local SGD: Accuracy vs Communication

0.0

0.2

0.4

0.6

0.8

1.0

Co
m

m
un

ica
tio

n
Co

st
 (R

el
at

iv
e)

Convergence Error
Communication Cost

Runtime per iteration = Compute + 1
τ

Comm.

Insight: Increasing τ improves efficiency but risks model drift.

ECE 5290/7290 & ORIE 5290 15/ 32

Why Local SGD works under homogeneous data?

If f (x) is convex and all workers start synchronized (xt
i = x̄t):

fi(xt+τ
i) ≤ fi(x̄t)− (descent term for worker i).

Thus, synchronization preserves global descent.

f (x̄t+τ) ≤ 1
n

n∑
i=1

fi(xt+τ
i) ≤ f (x̄t)− (averaged progress).

Not true in general if fi differ across workers (non-i.i.d.).

ECE 5290/7290 & ORIE 5290 16/ 32

Quadratic objectives: analytical insight

For local quadratic objectives fi(x) = 1
2 x>Aix − b>

i x:

xk+1
i = xk

i − ηk∇fi(xk
i).

Averaging yields:

E[x̄k+1|Fk] = x̄k − ηk
1
n

n∑
i=1

∇fi(xk
i) ≈ x̄k − ηk∇f (x̄k).

Hence, Local SGD mimics global descent dynamics.

ECE 5290/7290 & ORIE 5290 17/ 32

Local SGD improves efficiency in quadratic setting

Theorem 1 (Local SGD under smooth and convex loss)
The error bound for Local SGD with τ local updates equals the bound for
Mini-batch SGD with batch size n and Kτ rounds:

εL-SGD :=
1
K

K∑
k=1

E[||∇f (xk)||22] = Θ

(
1

Kτ
+

σ√
nKτ

)

More local updates τ always help convergence.

Mini-batch SGD: εMB-SGD = Θ
(

1
K + σ√

nKτ

)
Local SGD can be better given the same computation budget.

ECE 5290/7290 & ORIE 5290 18/ 32

Performance for general convex objectives*

Upper and lower bounds for Local SGD:

Upper: εL-SGD = O
(

σ2/3

K 2/3τ 1/3 +
σ√
nKτ

)

Lower: Ω

(
σ2/3

K 2/3τ 2/3 +
σ√
nKτ

)

Mini-batch SGD: Θ
(

1
K + σ√

nKτ

)
Local SGD better when K . τ , worse when K & τ .

Woodworth et al. “Is Local SGD Better than Mini-batch SGD?”, ICML 2020

ECE 5290/7290 & ORIE 5290 19/ 32

Why local SGD may fail under heterogeneous data?

In heterogeneous (non-i.i.d.) data settings, local gradients are misaligned

Local updates diverge due to heterogeneous data (Γ2).
Need additional assumptions to control gradient dissimilarity.
Larger τ ⇒ greater deviation from the global model.

ECE 5290/7290 & ORIE 5290 20/ 32

Summary: Parallel SGD vs local SGD

Aspect Parallel SGD Local SGD

Communication Every iteration Every τ iterations

Local computation 1 gradient step τ local steps

Speed Communication-limited Compute-efficient

Convergence rate Stable Slower ((η2τΓ2) bias)

Best for Data centers, i.i.d. data Federated settings

ECE 5290/7290 & ORIE 5290 21/ 32

Takeaway: Communication - accuracy trade-off

0 10 20 30 40 50 60
Local Steps Between Synchronizations ()

0.012

0.014

0.016

0.018

Co
nv

er
ge

nc
e

Er
ro

r

Trade-off in Local SGD: Accuracy vs Communication

0.0

0.2

0.4

0.6

0.8

1.0

Co
m

m
un

ica
tio

n
Co

st
 (R

el
at

iv
e)

Convergence Error
Communication Cost

τ = 1: fully synchronized (Parallel SGD)
τ > 1: fewer syncs ⇒ faster but drift grows
Choose τ based on network bandwidth and data heterogeneity

Rule of thumb: τ∗ ∝
√

ccomm
ccomp

ECE 5290/7290 & ORIE 5290 22/ 32

When to use local SGD?

Recommended if:
Communication cost ccomm � ccomp

Data across workers are relatively homogeneous
Occasional synchronization suffices for convergence

Avoid if:
Highly non-i.i.d. data (strong gradient heterogeneity)
Models are unstable to small parameter changes

ECE 5290/7290 & ORIE 5290 23/ 32

Table of Contents

Reduce the Communication Rounds via Local SGD

Reduce the Number of Bits via Quantization

ECE 5290/7290 & ORIE 5290 24/ 32

Deterministic quantization

Definition: For any vector v = [v1, v2, . . . , vd]
> ∈ Rd , the j-th entry of

the s-level quantized vector Qs(v) is defined as:

[Qs(v)]j := ‖v‖2 · sign(vj) · ζj(v , s),

Let 0 ≤ ` < s be an integer such that |vj |
‖v‖2

∈
[
`
s ,

`+1
s
]
. Then:

ζj(v , s) =


`
s , if |vj |

‖v‖2
− `

s ≤ 1
2s ,

`+1
s , otherwise

0 `
s

`+1
s

1

|vj |
‖v‖2

0 `
s

`+1
s

1

|vj |
‖v‖2

ECE 5290/7290 & ORIE 5290 25/ 32

Example: deterministic quantization (s = 5)

Example: Consider a 2-D vector v = [0.36, 0.38]. Let s = 5. Its `2-norm
is ‖v‖2 =

√
0.362 + 0.382 ≈ 0.523. Thus,

|v1|
‖v‖2

= 0.688, |v2|
‖v‖2

= 0.726.

Both values fall into the same quantization interval
[3

5 ,
4
5
]
= [0.6, 0.8].

0 3
5

4
5

1

|v1|
‖v‖2

= 0.688

0 3
5

4
5

1

|v2|
‖v‖2

= 0.726

According to the rule: [Qs(v)]j = ‖v‖2 · sign(vj) · ζj(v , s),
we obtain: Q5(v) = 0.523 [0.6, 0.8] = [0.314, 0.418].

ECE 5290/7290 & ORIE 5290 26/ 32

Loss of deterministic quantization

Problem with this strategy: Higher quantization error for values that
are further away from the center of the interval.

Lemma. For any vector v ∈ Rd , we have:
(i) ‖Qs(v)− v‖∞ ≤ 1

s ‖v‖2 (bias)

(ii) ‖Qs(v)− v‖2
2 ≤ d2

s ‖v‖2
2

ECE 5290/7290 & ORIE 5290 27/ 32

Stochastic quantization

For any vector v = [v1, . . . , vd]
> ∈ Rd , the j-th entry of the s-level

quantized vector Qs(v) is:

[Qs(v)]j := ‖v‖2 sign(vj) ζj(v , s),

where the random variable ζj(v , s) is:

ζj(v , s) =


`+ 1

s , with probability s
(

|vj |
‖v‖2

− `

s

)
,

`

s , otherwise

See example for s = 4 levels below:

0 0.25 0.5 0.6 0.75 1

P = 0.6 P = 0.4

ECE 5290/7290 & ORIE 5290 28/ 32

Lemma: properties of stochastic quantization

Lemma: For any vector v ∈ Rd , if we apply stochastic quantization
Qs(v), then we have:

(i) Unbiasedness:
E[Qs(v)] = v

(ii) Bounded variance:

E
[
‖Qs(v)− v‖2

2
]
≤ min

(
d
s2 ,

√
d

s

)
‖v‖2

2

The proof of the second property is given in Appendix 1 of the QSGD paper
https://arxiv.org/pdf/1610.02132.

https://arxiv.org/pdf/1610.02132

ECE 5290/7290 & ORIE 5290 29/ 32

Convergence guarantees for QSGD: error bound

If Q(v (t)
i) is an unbiased stochastic estimator of ∇Fi(xt), then the

quantized update is equivalent to a stochastic gradient update, and the
standard SGD analysis can be applied.

Theorem 2 (Convergence of QSGD)
Let f be L-smooth and ηk ≡ η = 1/

√
K . Then the following holds:

1
K

K∑
k=1

E
[
‖∇f (xk)‖2

2
]
≤ O

 σ√
nK

√√√√1 +min

(
d
s2 ,

√
d

s

) .

The error versus iterations convergence becomes worse if we use
fewer quantization levels s.

ECE 5290/7290 & ORIE 5290 30/ 32

Proof of QSGD error convergence bound

By combining the variance upper bound with the bounded estimation
error property of the stochastic quantizer, we have:

EQ
[
‖Q(g(x; ξ))− g(x; ξ)‖2

2
]
≤ min

(
d
s2 ,

√
d

s

)
‖g(x; ξ)‖2

2

⇒ EQ
[
‖Q(g(x; ξ))‖2

2
]
≤ ‖g(x; ξ)‖2

2 +min

(
d
s2 ,

√
d

s

)
‖g(x; ξ)‖2

2

Eξ

[
EQ
[
‖Q(g(x; ξ))‖2

2
]]

≤ Eξ

[
‖g(x; ξ)‖2

2
]
+min

(
d
s2 ,

√
d

s

)
Eξ

[
‖g(x; ξ)‖2

2
]

E
[
‖Q(g(x; ξ))‖2

2
]
≤

(
1 +min

(
d
s2 ,

√
d

s

))(
‖∇F (x)‖2

2 + σ2)

ECE 5290/7290 & ORIE 5290 31/ 32

Implementation of stochastic quantization

After quantization, we transmit Qs(v) instead of the full vector v .

The quantized vector Qs(v) can be represented by the tuple:

Qs(v) =
(
‖v‖2︸︷︷︸
32 bits

, sign(vj)
d
j=1︸ ︷︷ ︸

d bits

, ζj(v , s)d
j=1︸ ︷︷ ︸

d log2 s bits

)

Total:
32 + d(1 + log2 s) vs. 32d (full precision)

Conclusion: Quantization effectively reduces communication cost while
introducing a moderate increase in the error versus during convergence.

Recap and fine-tuning

What we have talked about today?
⇒ Local SGD reduces communication rounds by allowing each worker

to perform multiple local updates before synchronization.
⇒ Quantization reduces communication cost by transmitting

gradients with fewer bits.

Welcome anonymous survey!

	Reduce the Communication Rounds via Local SGD
	Reduce the Number of Bits via Quantization

