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Example: air pollution prediction in smart cities

AIR POLLUTION PREDICTION IN
SMART CITIES

« temperature
« humidity
o time
* location

There is a community of multiple houses, where each house has a smart
sensor that records environmental information.

Each house collects data pairs &, = {a,, b,} over time, where:
a, = (temperature, humidity, time, location, etc.)

b, = concentration of a particular pollutant.
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Motivation of distributed training

Each house collects
local data (a,.b,)

Al
model
b =h(x;a)

Collaborative
training

Goal: All houses want to collaboratively train a machine learning model
to predict future b given a:

b = h(x; a)

where x denotes the model parameters to be learned.
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Example: next-word prediction on smart keyboards

Each smartphone collects sequences of

Model trained
words typed by the user. collaboratively acrossdevices

h(xa)

Trained Model

current word

a, = Vec : y Word embeding
past word EEEN | predicted
Oe e next word
“ ”
b, = Vec(next word) . ae. park

| am going to the
Here, Vec(+) denotes the Word-to-vector

embedding operation. | am going to thel

ark ||store||office]
Goal: Learn a model h(x; a) to predict
the next word embedding: SR

b = h(x; a)
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Why perform distributed training?

Key question: Why distributed data?

Main reason: Privacy!

m Each house may not want to share its raw sensor data with others or
with a central server.

m Instead, they exchange only model updates or gradients to preserve
local data confidentiality.

Secondary reason: Bandwidth and latency!
m Reduce communication overhead of transferring large datasets.
m Enable real-time, edge-level learning across smart devices.

©)
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Optimization formulation of data parallelism

A network of n nodes (such as mobile devices) collaborate to solve:

min f(x) E fi(x), where
x€ERI

fi(x) = B¢ [F(x: &)

Central server
m Each component f; : RY — R is local and
private to node i.

m Random variable &; denotes local data
following distribution D;.

m D; may be different = data heterogeneity.

©)

Local data on nodes
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Parallel SGD: compute locally, communicate globally

1 n
min () = L AR where £ = Ego[Flxi )]

gk = VF(x; &) (Local compt.)
PSGD

n
Xkl — ke 1 E g’ (Global comm.)
n
i=1

= Each node i samples mini-batch £ and computes VF (x*; £F).

m All nodes synchronize (i.e., globally average) to update x.
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Communication overhead of distributed training

Communication overhead:

m Each entry of a d-dimensional vector (model or gradient) requires 32
bits by default float32 (IEEE 754 single-precision floating-point).

m Each upload or download of the vector incurs:
Communication cost =32 x d X n

where

32: bits per entry,
d: number of dimensions (10° ~ 10'!),
n: number of workers (10° ~ 10%).

= Total communication per round = O(10'° to 10'°) bits.
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Solutions to overcome communication overhead

Goal: Reduce the total communication cost per iteration:

32xdxn

Possible solutions:

S1: Reduce the communication rounds:
e.g., Local SGD: perform 7 local updates before synchronization to
reduce communication frequency while maintaining accuracy.

S2: Reduce the number of bits via quantization/sparsification:
e.g., Stochastic or deterministic quantization, threshold-based or
Top-k sparsification.

S3: Reduce the number of workers:
e.g., Randomized / cyclic and adaptive worker selection (LAG).
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Communication bottleneck in Parallel SGD

m In Parallel SGD, workers synchronize after every step.

m Comm. dominates runtime when n is large or network is slow.

Time per lteration

4

_ - Total Time

Communication Time

Communication
dominates for large K

Compute Time
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|dea: Local updates before synchronization

Key idea: Each node i performs several SGD steps before averaging.
x,-(sﬂ) = x,-(s) - nVF(x,-(s); {,(5)), s=0,...,7—1
= x¥. After every T steps:
1 n
k+1 _ 2 ()
X = = ;x,

local steps communication communication

>8>0 >0>0>0 >0
O*O*OEO—NO»OEQ
-0 ->0->0>0->0

_Benefit: Reduces communication by a factor of 7.

where x(O)

i
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Mini-batch SGD vs. Local SGD

Mini-batch or Parallel SGD:

xt = x fnt—ZZVF

i=1 s=1
Local SGD:
xt —n:VF(x}; &), tmod T #0
xt =

5 i (xf = neVF(x{;€f)), tmod7=0
Method Mini-batch SGD | Local SGD
# Comm. rounds | K K
Batch size nT n
# Model updates | K K
# Gradient calcs | nTK nTK
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Communication vs. computation trade-off

Trade-off in Local SGD: Accuracy vs Communication

-1.0
0.018f } .
] =
- ©
5 1 0.8 3
& 0.016f ) b
§ 1 = Convergence Error -0.6 S
qéu ‘l == Communication Cost s
g 0.014F -0.4 §
3 g
- £
0.2 £
0.012} S S

i i i i S ———— O X |

0 10 20 30 40 50 60

Local Steps Between Synchronizations (t)

. . . 1
Runtime per iteration = Compute + —Comm.
T

Insight: Increasing 7 improves efficiency but risks model drift.

€
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Why Local SGD works under homogeneous data?

If f(x) is convex and all workers start synchronized (xf = x*):
fi(xIT7) < £i(x*) — (descent term for worker /).

Thus, synchronization preserves global descent.

1 n
F(R47) < D7 i(xf*7) < F(R') — (averaged progress)

i=1

Not true in general if f; differ across workers (non-i.i.d.).
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Quadratic objectives: analytical insight

For local quadratic objectives f;(x) = $x " A;x — b x:
X = xt = V().

Averaging yields:
E[x<HYFH = %k — e Zw xK) ~ %% -, VF(X¥).

Hence, Local SGD mimics global descent dynamics.
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Local SGD improves efficiency in quadratic setting

Theorem 1 (Local SGD under smooth and convex loss)

The error bound for Local SGD with 7 local updates equals the bound for
Mini-batch SGD with batch size n and K7 rounds:

cLsop = & S EIVARIIE = 0 1+ 7)
L-SGD -— K 2| — K m

k=1

m More local updates 7 always help convergence.

m Mini-batch SGD: eyp.sap = @(% + \/:;T)

m Local SGD can be better given the same computation budget.
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Performance for general convex objectives*

Upper and lower bounds for Local SGD:

o2/3 o
Upper: 1560 = O(Kz/sfl/a * m)
a2/3 o
Lower: Q(K2/3T2/3 + m)

Mini-batch SGD:  © (% + )

Local SGD better when K < 7, worse when K 2 7.

Woodworth et al. “Is Local SGD Better than Mini-batch SGD?", ICML 2020
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Why local SGD may fail under heterogeneous data?

In heterogeneous (non-i.i.d.) data settings, local gradients are misaligned

1D Settings: Non-IID Settings: / 9?*3
+

61
) i+
3 1
142 03" /,/ gt+3
_ 1 0 .
L [ 1 S . .
i O DT s <.
> —= N

t+1\><//7(9t+3 N
v ohr? M
»

—> Client 1
— ClientK

~——> Minibatch SGD

Local SGD
Pl T
61\4 0t+2 0t+3
M M

m Local updates diverge due to heterogeneous data (I'?).
m Need additional assumptions to control gradient dissimilarity.

m Larger 7 = greater deviation from the global model.
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Summary: Parallel SGD vs local SGD

Aspect Parallel SGD Local SGD
Communication Every iteration Every 7 iterations
Local computation 1 gradient step 7 local steps

Speed Communication-limited Compute-efficient
Convergence rate  Stable Slower ((n?7T?) bias)
Best for Data centers, i.i.d. data Federated settings
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Takeaway: Communication - accuracy trade-off

Trade-off in Local SGD: Accuracy vs Communication

0.018} ! 10 <

1 >

1 =

5 1 *0.85

& 0.016f ) b

g 1 = Convergence Error -0.6 8

“éa ‘l == Communication Cost 5

£0.014F -04%

3 g

- 1S

0.2 £

0.012} — 38
------------- -0.0

0 10 20 30 40 50 60
Local Steps Between Synchronizations (t)

m 7 = 1: fully synchronized (Parallel SGD)
m 7 > 1. fewer syncs = faster but drift grows

m Choose 7 based on network bandwidth and data heterogeneity
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When to use local SGD?

Recommended if:
m Communication cost Ccomm > Cecomp
m Data across workers are relatively homogeneous

m Occasional synchronization suffices for convergence

Avoid if:
m Highly non-i.i.d. data (strong gradient heterogeneity)

m Models are unstable to small parameter changes
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Deterministic quantization

Definition: For any vector v = [vi, v, ..., v4]" € RY, the j-th entry of
the s-level quantized vector Qs(v) is defined as:

[Qs(v)]; := [lvll2 - sign(v)) - G(v, s),

Let 0 < £ < s be an integer such that 4L ¢ [£, £H]. Then:

llv]l2 s
L eyl e 1
o= MR
j\Vy>) =
ng—l, otherwise
vl vl
llv]l2 [lv]l2
IR Y S T E L1 1 o4 1
0 £ 41 1 0 L 41 1
S S S S
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Example: deterministic quantization (s = 5)

Example: Consider a 2-D vector v = [0.36, 0.38]. Let s = 5. Its £,-norm

is ||v]|2 = v/0.362 4 0.382 = 0.523. Thus,

v
[vll2

— 0.688, 2l _ .76,
vl

Both values fall into the same quantization interval [, 2] = [0.6,0.8].

vl _ 0688 vl _ 726
vll> Tvil2
N Y WS E— IR R N EPA S
0 3 4 1 0 3 4 1
5 5 5 5

According to the rule: [Q.(v)]; = ||v]|2 - sign(v;) - ¢j(v,s),
‘we obtain: Qs(v) = 0.523[0.6, 0.8] = [0.314, 0.418].
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Loss of deterministic quantization

Problem with this strategy: Higher quantization error for values that
are further away from the center of the interval.

Lemma. For any vector v € R, we have:

(i) 1Q:(v) = vleo < lvll2 (bias)

— s

(i) [1Qs(v) = V[ < £|v|3

,
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Stochastic quantization

For any vector v = [v1,...,v4]" € RY, the j-th entry of the s-level
quantized vector Qs(v) is:

[Qs(v)); := [lvll2 sign(v;) (v, ),
where the random variable (;(v, s) is:

(41 . /
i, with probability s( il ) ,
s vl s

(j(V,S) =

l .
-, otherwise
s

See example for s = 4 levels below:

0 0.25 0.5 0.6 0.75 1
°® ® *— - ® ®
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Lemma: properties of stochastic quantization

Lemma: For any vector v € R?, if we apply stochastic quantization
Qs(v), then we have:

(i) Unbiasedness:

E[Qs(v)] = v

(i) Bounded variance:

E[|Qu(v) - vI3] < m(" ﬂ) IvIi

S

The proof of the second property is given in Appendix 1 of the QSGD paper
https://arxiv.org/pdf/1610.02132.
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Convergence guarantees for QSGD: error bound

If Q(v,(t)) is an unbiased stochastic estimator of VF;(x"), then the
quantized update is equivalent to a stochastic gradient update, and the
standard SGD analysis can be applied.

Theorem 2 (Convergence of QSGD)
Let f be L-smooth and 7, =7 = 1/v/K. Then the following holds:

K
o (d Vd
E V < R +m L
” f ] © \/W ! In<52’ S)

m The error versus iterations convergence becomes worse if we use
fewer quantization levels s.
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Proof of QSGD error convergence bound

By combining the variance upper bound with the bounded estimation
error property of the stochastic quantizer, we have:

EQ[||o(g<x;s>)—g(x;e>||]<mm(§’ f) le(x: &)1
> EollQg(xi )3 < l(x s)||2+mm<sd f) le(x:€)I3

52

E[lQ(e(xi ©)1B] < (Hmm(_ﬁi,f)) (IVFGI +0?)

E¢ [Eo[l|Q(g(x: €))I3]] < Ee[llg(x: €)II5] +min (d, @) Ee [llg(x: €)I3]
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Implementation of stochastic quantization

After quantization, we transmit Qs(v) instead of the full vector v.

The quantized vector Qs(v) can be represented by the tuple:

Q:(v) = ([1vl sign()s, G (v, 5)i-s )

32 bits d bits dlog, s bits

Total:
32+ d(1+logys) vs. 32d (full precision)

Conclusion: Quantization effectively reduces communication cost while
introducing a moderate increase in the error versus during convergence.
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Recap and fine-tuning

m What we have talked about today?

= Local SGD reduces communication rounds by allowing each worker
to perform multiple local updates before synchronization.

= Quantization reduces communication cost by transmitting
gradients with fewer bits.

Welcome anonymous survey!
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