Distributed Optimization for Machine Learning

Lecture 13 - Distributed Training: A Close Look at Data Parallelism

Tianyi Chen

School of Electrical and Computer Engineering
Cornell Tech, Cornell University

October 8, 2025

<3
A \J

ooy me

Table of Contents

Two Distributed Training Scenarios

ECE 5290/7290 & ORIE 5290 2/42

Training large models requires large compute

Large-Scale Era
>

Deep Learning Era

Training compute (FLOPS)

Publication date

Sevilla et al., “Compute trends across three eras of machine learning,” IJCNN 2022.

ECE 5290/7290 & ORIE 5290 3/42

Why parallelize and distributed training?

Modern LLMs push parameter count, context length, and training
tokens to extremes.

m Memory: weights + optimizer states + activations.

m Throughput: tokens/sec limited by compute and communication.

Larger scale 4 larger memory

ECE 5290,/7290 & ORIE 5290 4/42

Memory decomposition of training LLMs

Back-of-the-envelope memory (dense FP16 training):

Memory = Model + Gradients + Optimizer States+ Activations
~—— Y~ — — ————

weights backprop e.g., Adam m,v forward /backward pass

Model Gradients P Optimizer

Activati ?
Parameters P States 2P ctivations (?)

Typical memory usage breakdown in training large models.

ECE 5290,/7290 & ORIE 5290 5/42

Memory comparison between GPT-3 vs LLaMA

GPT-3 175B LLaMA 65B
m Weights (FP16): m Weights (FP16):
175%10° - 2 ~ 350 GB 65%10° -2 ~ 130 GB
m Training state (~16 B/param): m Training state (~16 B/param):
~28TB ~1.04 TB
m Token storage (e.g., 300B tokens m If trained on ~1T tokens
©2B/token): ~ 600 GB raw text ©2B/token: ~ 2 TB raw text

Implication: A single GPU cannot hold full training state for 65B-175B dense
models. We need parallelism: data, model (tensor/pipeline), or hybrids (3D).

ECE 5290,/7290 & ORIE 5290 6/42

Thousands of GPUs are needed to train LLMs

2 example models

48 context length 2048 context length
(2020) 175B parameters (2023) 65B parameters

Trained on 300B tokens Trained on 1-1.4T tokens

Mol Kame

parums dimension m heads n layers leaming rate baichsize n tokens
678 4096 32 30et
: : 1308 5120 0 3.0e~
G367 . 3 3 M 1258 6656 52 1564
GPT3 138 5 % 2 L0 10 528 192 154
GPT3 1758 ur “GPT-4" £ s 0.0 » 10~ & i i B

architestares, and
AL soeatels et

ECE 5290,/7290 & ORIE 5290 7/42

Two paths: Data parallel vs. model parallel

Data Parallel Model Parallel

GPU A GPU B
Model replica 1 Model replica 2 - N N

all-reduce gradients

(D T D s o i G | G

mini-batch 1 mini-batch 2 send activations/gradients

Data parallel: replicate the model; split the data; consensus at each step.

Model parallel: split the model across devices; exchange activations.

ECE 5290/7290 & ORIE 5290 8/42

Why start with data parallel? Memory arithmetic

Let P be parameters, b bytes/param for weights, s bytes/param for
optimizer & master, and A activation memory per batch.

P.b+P.
Per-GPU memory (DP) = % + A (replicated across GPUs).

m If this fits in one GPU, add GPUs with DP to increase tokens/sec.
m If it doesn’t fit, you must shard with model parallel across GPUs:

P-b+P-
Per-GPU memory (MP) = Ui + per-stage activations
Nshards

m Combine with activation checkpointing to push the limit.

ECE 5290,/7290 & ORIE 5290 9/42

When do we need each?

m Data Parallel: model + optimizer fit on a single GPU, but you
want more throughput

Near-linear speedup until communication (all-reduce) dominates.
Combine with compression, mixed precision, and large batch training.

m Model Parallel: model does not fit (weights/activations/optimizer)
Tensor parallel: shard matrices within layers.

Pipeline parallel: shard layers across stages

Design target for different parallelisms: minimize
communication/compute ratio while keeping memory under budget.

ECE 5290/7290 & ORIE 5290 10 /42

3 ways of parallelism used to train large models

In today’s industry, there are three dimensional-parallelism indicates 3
orthogonal parallel techniques used to train large models such as LLMs.

Data Parallelism

Parameter Server W' = W - 7AW
DDDDDC]\?
Model ‘ ‘DD
Replcas () 00
Lol ﬁj 5
Data parallelism Pipeline parallelism Tensor parallelism

model parallelism

This lecture mainly focuses on data parallelism.

ECE 5290/7290 & ORIE 5290 11/42

Distributed training is extremely challenging

m The communication overhead and GPU idle time hamper scalability
m Each GPU can only achieve 30%-55% of its peak compute power

m The system achieves 30% scalability - inefficient

30% of its peak FLOPs/s visualization

PFLOPs/s [Idealthroughput W Real throughput
576
432
288
144 l

64 128 256 512 1024 2048
#GPUs

ECE 5290/7290 & ORIE 5290 12 /42

Distributed training beyond data centers

50.1 Billions
42.1 Billions @ 1

50 348 Billions

229 Billions 28.4 Billions

40 0 S -
14.4 Billions 182 Billions q‘b
$7 Billions 11.2 Billions @

1,000,000 0.5 Billions

10 @ Q 48 Billions @

Billions of Devices
8

1992 03 09 12 14 16 18 20

Year
Source: CISCO white paper

ECE 5290/7290 & ORIE 5290 13 /42

Table of Contents

Data Parallelism and Parallel SGD

ECE 5290/7290 & ORIE 5290 14 /42

Optimization formulation of data parallelism

A network of n nodes (here are GPUs) collaborate to solve:

min f(x) = Zf . where | £i(x) = B¢ «p[F(x:&)] |

Central server
m Each component f; : RY — R is local and
private to node i.

m Random variable &; denotes local data
following distribution D;.

m D; may be different = data heterogeneity.

Local data on nodes

ECE 5290/7290 & ORIE 5290 15 /42

Mini-batch SGD: Averaging within one machine

Key idea: Instead of updating per sample, average gradients over a
mini-batch of samples.

k+

-y

oo\d

Single Machine
&2 VF(x)

(R N

Mini-batch of B samples

Effect: Reduces variance and stabilizes convergence.

€

ECE 5290/7290 & ORIE 5290 16 /42

Parallel SGD: compute locally, communicate globally

min, Fx Z i(x). where fi(x) = B¢ [F(x: &)
gk = VF(x" &) (Local compt.)
PSGD

1k 1S gk (Global
X X nZ:g, (Global comm.)

m Each node i samples mini-batch £ and computes VF (x¥; £F).

m All nodes synchronize (i.e., globally average) to update x.

ECE 5290/7290 & ORIE 5290

17/42

Mini-batch vs. Parallel SGD implementation

Aspect

Mini-Batch SGD

Parallel SGD

Computation
Synchronization

Effective batch size
Noise reduction
Communication

Data heterogeneity

One machine averages over
B samples

Implicit (within memory)

B

By sampling multiple data
None

N/A (one dataset)

n workers compute on sep-
arate batches

Explicit (via Allreduce or
parameter server)

n X Biocal

By averaging across workers
Required per iteration
Possible (D; # Dj)

Key: Parallel SGD = Mini-batch SGD distributed across multiple nodes.

ECE 5290/7290 & ORIE 5290

18/ 42

From consensus to Ring-AllReduce

Recall: In consensus averaging, all workers iteratively mix local states

Xkt = g Vl/,-jxj’f7 where W is doubly stochastic.
J
. kK g 150
Goal: Reach consensus average x{ — X =+ X;.

Connection to distributed training
In practice, when synchronizing gradients or parameters across GPUs, we

perform the same averaging - but via the Ring-AllReduce protocol.

Consensus theory = Efficient synchronization in deep learning clusters.

ECE 5290/7290 & ORIE 5290

19/42

Globally average in practice: Ring-AllReduce

Idea: All GPUs share gradients in a ring to compute the global average.

No central server; synchronization is peer-to-peer.

== Reduce-scatter

w — All gather

Key takeaway: Each GPU eventually holds g = %Zig,- and updates x.

centra/ized synchronization (common in datacenter cluster training).

b ECE 5290/7290 & ORIE 5290

20/ 42

Ring-AllReduce Phase 1: Reduce-scatter

Goal: Compute partial sums of gradient chunks in a distributed way.

m Each GPU splits its gradient into n parts:

8i = [gi(1)7gi(2)7 R i(n)]'

m GPUs pass and sum chunks around ring.

m After n—1 steps, each GPU holds one
summed chunk 3, g,.(k).

Analogy: Everyone edits one page of an essay.
Result: Each GPU stores % of the total gradient sum.

ECE 5290/7290 & ORIE 5290 21/42

Ring-AllReduce Phase 2: All-Gather

Goal: Share the summed chunks so that all GPUs obtain the full
averaged gradient.

m Each GPU holds one chunk E,g,-(k).
m GPUs circulate these chunks around ring.

m After n—1 passes, all GPUs have all
chunks:

[Zg(1)7 Zg(2)7 M) Zg(")]

m Each divides by nto get g =13, g.

Analogy: Everyone exchanges their completed
page to rebuild the full essay.

Result: Each GPU has the full averaged gradient g and updates x.

ECE 5290/7290 & ORIE 5290 22/42

Globally average in practice: Parameter server

Idea: Each client computes local gradients, sends them to a central
server, which averages and broadcasts the updated global model.

~N

[Parameter Server: global average g = 1Y g

J

> <

\

RN
Si=l==

g =VF(x;&1) & =VF(x;&) g =VF(x&) ga=VF(x;&)

All clients synchronize per iteration

Key takeaway: A single global node (server) performs the averaging and
distributes x**1. Common in Federated Learning.

ECE 5290/7290 & ORIE 5290 23/42

Parallel SGD convergence rate

Assumptions:
m F: p-strongly convex, L-smooth

m g(x; &) is an unbiased estimate of VF(x), with bounded variance.

Theorem 1 (Parallel SGD under smooth and convex loss)

Let f be L-smooth and 7, =7 = 1/v/K. Then the following holds

ZE{HW I <0 (% + =)

ECE 5290,/7290 & ORIE 5290 24 /42

Linear speedup in parallel SGD

Theorem 1 (Parallel SGD under smooth and convex loss)

Let f be L-smooth and 7, = 17 = 1/v/K. Then the following holds

. ZE[HW I <0 (% + =)

This implies that to achieve an e-accurate solution, Parallel SGD needs

2

<e = K>—2 iterations,
nK ne

a

which decreases linearly with number of nodes n; called linear speedup!

ECE 5290/7290 & ORIE 5290

25 /42

Parallel SGD may not achieve actual linear speedup

m Cannot achieve ideal linear speedup due to communication overhead

m Larger communication-to-computation ratio — worse performance

W psGD [Ideal linear speedup

8 3
g g

Total img/sec
n
g

o mm
—— (]
4 8 16 32 64 128
GPUs

Total img/sec

BN PSGD

20000

8

S
4

[Ideal linear speedup

16 32 64 128
#GPUs

Small comm.-to-compt. ratio

Large comm.-to-compt. ratio

m Ring-all reduce is used in each experiment!
m How can we reduce the communication overhead in Parallel SGD?

ECE 5290/7290 & ORIE 5290

26 /42

Methodologies to save communication

m Global average incurs O(n) comm. overhead; proportional to
network size n [Decentralized communication]

m Each node interacts with the server at every iteration; proportional
to iteration numbers [Lazy communication]

m Each node sends a full model (or gradient) to the server;
proportional to dimension d [Compressed communication]

m and more (asynchronous communication; robust communication
against Byzantine nodes, etc.)

ECE 5290/7290 & ORIE 5290 27 /42

Table of Contents

Communication Reduction via Local SGD

ECE 5290/7290 & ORIE 5290 28 /42

Optimization formulation of data parallelism

A network of n nodes (such as mobile devices) collaborate to solve:

min f(x) = Zf . where | £i(x) = B¢ «p[F(x:&)] |

Central server
m Each component f; : RY — R is local and
private to node i.

m Random variable &; denotes local data
following distribution D;.

m D; may be different = data heterogeneity.

Local data on nodes

ECE 5290/7290 & ORIE 5290 29/42

Communication bottleneck in Parallel SGD

m In Parallel SGD, workers synchronize after every step.

m Comm. dominates runtime when n is large or network is slow.

Time per lteration

4

_ - Total Time

Communication Time

Communication
dominates for large K

Compute Time

ECE 5290/7290 & ORIE 5290

Number O’f Workers K

30/42

|dea: Local updates before synchronization

Key idea: Each node i performs several SGD steps before averaging.

x{=tD) :xgs)—ngi(s), s=0,...,7—1

1

0
where x,() = xk_ After every T steps:
1 n
Xkl — = Z XET)
n
i=1
local steps communication communication

>8>0 >0 >0>0 >0
O»O*OEO—NO—H)EQ
>0 ->0->0>0->0

enefit: Reduces communication by a factor of 7.

ECE 5290/7290 & ORIE 5290

31/42

Mini-batch SGD vs. Local SGD

Mini-batch or Parallel SGD:

xit = xt — e ZZVF
i=1 s=1
Local SGD:

et xt—n:VF(xE &), t mod T #0
’ % S (xE=meVF(xEE), tmodT=0
Method Mini-batch SGD | Local SGD
Comm. rounds | K K

Batch size nT n

Model updates | K TK

Gradient calcs | nTK nTK

ECE 5290/7290 & ORIE 5290

32/42

Communication vs. computation trade-off

Trade-off in Local SGD: Accuracy vs Communication

-1.0
0.018f } .
\ 2
- &
5 1 0.8 3
& 0.016f) b
@ 1 = Convergence Error -0.6 S
qéu ‘l == Communication Cost s
£0.014F 047
3 g
- £
0.2 £
0.012f S S

i i i i G ———— O X |

0 10 20 30 40 50 60

Local Steps Between Synchronizations (t)

. . . 1
Runtime per iteration = Compute + —Comm.
T

Insight: Increasing 7 improves efficiency but risks model drift.

ECE 5290/7290 & ORIE 5290 33/42

Why Local SGD works under homogeneous data?

If £(x) is convex and all workers start synchronized (x}f = X*):
f(X*7) < f(x") — (averaged descent term).

Thus, synchronization preserves global descent.
1 n
f—t+T < = f;,i:“-k—*r <f—t_ .
(x7) < — ; (xi"") < f(X*) — (progress)

Not true in general if f; differ across workers (non-i.i.d.).

ECE 5290/7290 & ORIE 5290

34/42

Quadratic objectives: analytical insight

For local quadratic objectives f;(x) = 2xTAix — b x:
X{ =X = V().

Averaging yields:
E[x|FF = xk — M Z V£(xK) ~ x5 — n V().

Hence, Local SGD mimics global descent dynamics.

ECE 5290/7290 & ORIE 5290 35/42

Local SGD improves efficiency in quadratic setting

Theorem 2 (Local SGD under smooth and convex loss)

The error bound for Local SGD with 7 local updates equals the bound for
Mini-batch SGD with batch size n and K7 rounds:

€L-SGD ‘= o2 ZE[HVf N3] = <K17- + \/:W)

m More local updates 7 always help convergence.

m Mini-batch SGD: eyp.sgp = 9(% + 7=)

v nKT
m Therefore, Local SGD can be better given the same computation
budget.

ECE 5290/7290 & ORIE 5290

36 /42

Performance for general convex objectives*

Upper and lower bounds for Local SGD:

o?/3 o
Upper: €L.sap = O<K2/371/3 + /;FIKT)
o?/3 o
Lower: Q<K2/372/3 + nKT>
ni . 1 fed
Mini-batch SGD: @(K + \/m)

Local SGD better when K < 7, worse when K 2 7.

Woodworth et al. “Is Local SGD Better than Mini-batch SGD?", ICML 2020

ECE 5290/7290 & ORIE 5290

37/42

Why local SGD may fail under heterogeneous data?
In heterogeneous (non-i.i.d.) data settings, local gradients are misaligned

11D Settings:

Non-1ID Settings: 9§+3
9i+‘ —> Client1
41
laxt o1 L ~——> ClientK
t+1 9?2/7' ed gt
9t\ﬁi-——’> g+3 <. —> Minibatch SGD
\3 _— —~
e _— Local SGD
Mo git? M T

0 i
M 0t+2 9t+3
M M

m Local updates diverge due to heterogeneous data (I'?).
m Need additional assumptions to control gradient dissimilarity.

m Larger 7 = greater deviation from the global model.

ECE 5290/7290 & ORIE 5290 38/42

Summary: Parallel SGD vs local SGD

Aspect Parallel SGD Local SGD
Communication Every iteration Every 7 iterations
Local computation 1 gradient step 7 local steps

Speed Communication-limited Compute-efficient
Convergence rate Stable Slower ((n?7T?) bias)
Best for Data centers, i.i.d. data Federated settings

ECE 5290/7290 & ORIE 5290 39/42

Takeaway: Communication - accuracy trade-off

Trade-off in Local SGD: Accuracy vs Communication

0.018} ! 10 <

1 >

1 =

5 1 *0.85

& 0.016f) b

g 1 = Convergence Error -0.6 8

“éa ‘l == Communication Cost 5

£0.014F -04%

3 g

- 1S

0.2 £

0.012} — S
------------- -0.0

0 10 20 30 40 50 60
Local Steps Between Synchronizations (T)

m 7 = 1: fully synchronized (Parallel SGD)
m 7 > 1: fewer syncs = faster but drift grows

m Choose 7 based on network bandwidth and data heterogeneity

ECE 5290/7290 & ORIE 5290 40 /42

When to use Local SGD?

Recommended if:
m Communication cost Ccomm > Cecomp
m Data across workers are relatively homogeneous

m Occasional synchronization suffices for convergence

Avoid if:
m Highly non-i.i.d. data (strong gradient heterogeneity)
m Models are unstable to small parameter changes

ECE 5290,/7290 & ORIE 5290 41/42

Recap and fine-tuning

m What we have talked about today?

= Data parallelism enables scaling model training across multiple
workers by distributing data and synchronizing models through averaging.

= Parallel SGD achieves global model updates via synchronization.

= Local SGD relaxes synchronization - maintaining learning
efficiency in homogeneous data; drift apart in heterogeneous settings.

y

	Two Distributed Training Scenarios
	Data Parallelism and Parallel SGD
	Communication Reduction via Local SGD

