
Distributed Optimization for Machine Learning
Lecture 13 - Distributed Training: A Close Look at Data Parallelism

Tianyi Chen

School of Electrical and Computer Engineering
Cornell Tech, Cornell University

October 8, 2025



ECE 5290/7290 & ORIE 5290 2 / 42

Table of Contents

Two Distributed Training Scenarios

Data Parallelism and Parallel SGD

Communication Reduction via Local SGD



ECE 5290/7290 & ORIE 5290 3 / 42

Training large models requires large compute



ECE 5290/7290 & ORIE 5290 4 / 42

Why parallelize and distributed training?

Modern LLMs push parameter count, context length, and training
tokens to extremes.

Memory: weights + optimizer states + activations.

Throughput: tokens/sec limited by compute and communication.

Larger scale + larger memory



ECE 5290/7290 & ORIE 5290 5 / 42

Memory decomposition of training LLMs

Back-of-the-envelope memory (dense FP16 training):

Memory = Model︸ ︷︷ ︸
weights

+Gradients︸ ︷︷ ︸
backprop

+Optimizer States︸ ︷︷ ︸
e.g., Adam m,v

+ Activations︸ ︷︷ ︸
forward/backward pass

Model
Parameters P Gradients P Optimizer

States 2P
Activations (?)

Typical memory usage breakdown in training large models.



ECE 5290/7290 & ORIE 5290 6 / 42

Memory comparison between GPT-3 vs LLaMA

GPT-3 175B

Weights (FP16):
175×109 · 2 ≈ 350 GB
Training state (∼16 B/param):
≈ 2.8 TB
Token storage (e.g., 300B tokens
@2 B/token): ∼ 600 GB raw text

LLaMA 65B

Weights (FP16):
65×109 · 2 ≈ 130 GB
Training state (∼16 B/param):
≈ 1.04 TB
If trained on ∼1T tokens
@2 B/token: ∼ 2 TB raw text

Implication: A single GPU cannot hold full training state for 65B-175B dense
models. We need parallelism: data, model (tensor/pipeline), or hybrids (3D).



ECE 5290/7290 & ORIE 5290 7 / 42

Thousands of GPUs are needed to train LLMs



ECE 5290/7290 & ORIE 5290 8 / 42

Two paths: Data parallel vs. model parallel

Data Parallel

Model replica 1

mini-batch 1

Model replica 2

mini-batch 2

all-reduce gradients

Model Parallel
GPU A GPU B

send activations/gradients

Data parallel: replicate the model; split the data; consensus at each step.

Model parallel: split the model across devices; exchange activations.



ECE 5290/7290 & ORIE 5290 9 / 42

Why start with data parallel? Memory arithmetic

Let P be parameters, b bytes/param for weights, s bytes/param for
optimizer & master, and A activation memory per batch.

Per-GPU memory (DP) ≈ P · b + P · s
1 + A (replicated across GPUs).

If this fits in one GPU, add GPUs with DP to increase tokens/sec.
If it doesn’t fit, you must shard with model parallel across GPUs:

Per-GPU memory (MP) ≈ P · b + P · s
nshards

+ per-stage activations

Combine with activation checkpointing to push the limit.



ECE 5290/7290 & ORIE 5290 10 / 42

When do we need each?

Data Parallel: model + optimizer fit on a single GPU, but you
want more throughput

• Near-linear speedup until communication (all-reduce) dominates.
• Combine with compression, mixed precision, and large batch training.

Model Parallel: model does not fit (weights/activations/optimizer)
• Tensor parallel : shard matrices within layers.
• Pipeline parallel : shard layers across stages

Design target for different parallelisms: minimize
communication/compute ratio while keeping memory under budget.



ECE 5290/7290 & ORIE 5290 11 / 42

3 ways of parallelism used to train large models

In today’s industry, there are three dimensional-parallelism indicates 3
orthogonal parallel techniques used to train large models such as LLMs.

model parallelism

This lecture mainly focuses on data parallelism.



ECE 5290/7290 & ORIE 5290 12 / 42

Distributed training is extremely challenging

The communication overhead and GPU idle time hamper scalability
Each GPU can only achieve 30%-55% of its peak compute power
The system achieves 30% scalability - inefficient



ECE 5290/7290 & ORIE 5290 13 / 42

Distributed training beyond data centers



ECE 5290/7290 & ORIE 5290 14 / 42

Table of Contents

Two Distributed Training Scenarios

Data Parallelism and Parallel SGD

Communication Reduction via Local SGD



ECE 5290/7290 & ORIE 5290 15 / 42

Optimization formulation of data parallelism

A network of n nodes (here are GPUs) collaborate to solve:

min
x∈Rd

f (x) = 1
n

n∑
i=1

fi(x), where fi(x) = Eξi∼Di [F (x; ξi)]

Each component fi : Rd → R is local and
private to node i .

Random variable ξi denotes local data
following distribution Di .

Di may be different ⇒ data heterogeneity.

Central server

Local data on nodes



ECE 5290/7290 & ORIE 5290 16 / 42

Mini-batch SGD: Averaging within one machine

Key idea: Instead of updating per sample, average gradients over a
mini-batch of samples.

xk+1 = xk − η

B

B∑
j=1

∇F (xk ; ξk
j )

Single Machine

Mini-batch of B samples

1
B
∑B

j=1 ∇F (x; ξj )

Effect: Reduces variance and stabilizes convergence.



ECE 5290/7290 & ORIE 5290 17 / 42

Parallel SGD: compute locally, communicate globally

min
x∈Rd

f (x) =
1
n

n∑
i=1

fi(x), where fi(x) = Eξi∼Di [F (x; ξi)] .

PSGD

gk
i = ∇F

(
xk ; ξk

i
)

(Local compt.)

xk+1 = xk − η

n

n∑
i=1

gk
i (Global comm.)

Each node i samples mini-batch ξk
i and computes ∇F

(
xk ; ξk

i
)
.

All nodes synchronize (i.e., globally average) to update x.



ECE 5290/7290 & ORIE 5290 18 / 42

Mini-batch vs. Parallel SGD implementation

Aspect Mini-Batch SGD Parallel SGD

Computation One machine averages over
B samples

n workers compute on sep-
arate batches

Synchronization Implicit (within memory) Explicit (via Allreduce or
parameter server)

Effective batch size B n × Blocal

Noise reduction By sampling multiple data By averaging across workers
Communication None Required per iteration
Data heterogeneity N/A (one dataset) Possible (Di ̸= Dj )

Key: Parallel SGD = Mini-batch SGD distributed across multiple nodes.



ECE 5290/7290 & ORIE 5290 19 / 42

From consensus to Ring-AllReduce

Recall: In consensus averaging, all workers iteratively mix local states

xk+1
i =

∑
j

Wijxk
j , where W is doubly stochastic.

Goal: Reach consensus average xk
i → x̄ = 1

n
∑n

i=1 xi .

Connection to distributed training
In practice, when synchronizing gradients or parameters across GPUs, we
perform the same averaging - but via the Ring-AllReduce protocol.

Consensus theory ⇒ Efficient synchronization in deep learning clusters.



ECE 5290/7290 & ORIE 5290 20 / 42

Globally average in practice: Ring-AllReduce

Idea: All GPUs share gradients in a ring to compute the global average.
No central server; synchronization is peer-to-peer.

GPU 1

GPU 2

GPU 3

GPU 4

Reduce-scatter
— All gather

Key takeaway: Each GPU eventually holds ḡ = 1
n
∑

i gi and updates x.
Decentralized synchronization (common in datacenter cluster training).



ECE 5290/7290 & ORIE 5290 21 / 42

Ring-AllReduce Phase 1: Reduce-scatter

Goal: Compute partial sums of gradient chunks in a distributed way.

Each GPU splits its gradient into n parts:

gi = [g (1)
i , g (2)

i , . . . , g (n)
i ].

GPUs pass and sum chunks around ring.
After n−1 steps, each GPU holds one
summed chunk

∑
i g (k)

i .

Analogy: Everyone edits one page of an essay.

GPU 1

GPU 2

GPU 3

GPU 4

Result: Each GPU stores 1
n of the total gradient sum.



ECE 5290/7290 & ORIE 5290 22 / 42

Ring-AllReduce Phase 2: All-Gather

Goal: Share the summed chunks so that all GPUs obtain the full
averaged gradient.

Each GPU holds one chunk
∑

i g (k)
i .

GPUs circulate these chunks around ring.
After n−1 passes, all GPUs have all
chunks:

[
∑

i
g (1)

i ,
∑

i
g (2)

i , . . . ,
∑

i
g (n)

i ].

Each divides by n to get ḡ = 1
n
∑

i gi .

Analogy: Everyone exchanges their completed
page to rebuild the full essay.

GPU 1

GPU 2

GPU 3

GPU 4

∑
i g (1)

i

∑
i g (2)

i

∑
i g (3)

i

∑
i g (4)

i

Result: Each GPU has the full averaged gradient ḡ and updates x.



ECE 5290/7290 & ORIE 5290 23 / 42

Globally average in practice: Parameter server

Idea: Each client computes local gradients, sends them to a central
server, which averages and broadcasts the updated global model.

Parameter Server: global average ḡ = 1
n
∑

i gi

Client 1

g1 = ∇F (x; ξ1)

Client 2

g2 = ∇F (x; ξ2)

Client 3

g3 = ∇F (x; ξ3)

Client 4

g4 = ∇F (x; ξ4)

All clients synchronize per iteration

Key takeaway: A single global node (server) performs the averaging and
distributes xk+1. Common in Federated Learning.



ECE 5290/7290 & ORIE 5290 24 / 42

Parallel SGD convergence rate

Assumptions:
F : µ-strongly convex, L-smooth

g(x; ξ) is an unbiased estimate of ∇F (x), with bounded variance.

Theorem 1 (Parallel SGD under smooth and convex loss)

Let f be L-smooth and ηk ≡ η = 1/
√

K . Then the following holds

1
K

K∑
k=1

E[||∇f (xk)||22] ≤ O
(

1
K +

σ√
nK

)



ECE 5290/7290 & ORIE 5290 25 / 42

Linear speedup in parallel SGD

Theorem 1 (Parallel SGD under smooth and convex loss)

Let f be L-smooth and ηk ≡ η = 1/
√

K . Then the following holds

1
K

K∑
k=1

E[||∇f (xk)||22] ≤ O
(

1
K +

σ√
nK

)

This implies that to achieve an ϵ-accurate solution, Parallel SGD needs

σ√
nK

≤ ϵ =⇒ K ≥ σ2

nϵ2 iterations,

which decreases linearly with number of nodes n; called linear speedup!



ECE 5290/7290 & ORIE 5290 26 / 42

Parallel SGD may not achieve actual linear speedup

Cannot achieve ideal linear speedup due to communication overhead
Larger communication-to-computation ratio → worse performance

Ring-all reduce is used in each experiment!
How can we reduce the communication overhead in Parallel SGD?



ECE 5290/7290 & ORIE 5290 27 / 42

Methodologies to save communication

Global average incurs O(n) comm. overhead; proportional to
network size n [Decentralized communication]

Each node interacts with the server at every iteration; proportional
to iteration numbers [Lazy communication]

Each node sends a full model (or gradient) to the server;
proportional to dimension d [Compressed communication]

and more (asynchronous communication; robust communication
against Byzantine nodes, etc.)



ECE 5290/7290 & ORIE 5290 28 / 42

Table of Contents

Two Distributed Training Scenarios

Data Parallelism and Parallel SGD

Communication Reduction via Local SGD



ECE 5290/7290 & ORIE 5290 29 / 42

Optimization formulation of data parallelism

A network of n nodes (such as mobile devices) collaborate to solve:

min
x∈Rd

f (x) = 1
n

n∑
i=1

fi(x), where fi(x) = Eξi∼Di [F (x; ξi)]

Each component fi : Rd → R is local and
private to node i .

Random variable ξi denotes local data
following distribution Di .

Di may be different ⇒ data heterogeneity.

Central server

Local data on nodes



ECE 5290/7290 & ORIE 5290 30 / 42

Communication bottleneck in Parallel SGD

In Parallel SGD, workers synchronize after every step.
Comm. dominates runtime when n is large or network is slow.

Number of Workers K

Time per Iteration

Compute Time

Communication Time

Total Time

Communication
dominates for large K



ECE 5290/7290 & ORIE 5290 31 / 42

Idea: Local updates before synchronization

Key idea: Each node i performs several SGD steps before averaging.

x(s+1)
i = x(s)i − η g (s)

i , s = 0, . . . , τ − 1

where x(0)i = xk . After every τ steps:

xk+1 =
1
n

n∑
i=1

x(τ)i

Benefit: Reduces communication by a factor of τ .



ECE 5290/7290 & ORIE 5290 32 / 42

Mini-batch SGD vs. Local SGD

Mini-batch or Parallel SGD:

xt+1 = xt − ηt
1

nτ

n∑
i=1

τ∑
s=1

∇F (xt ; ξt,s
i )

Local SGD:

xt+1
i =

xt
i − ηt∇F (xt

i ; ξ
t
i ), t mod τ ̸= 0

1
n
∑n

i=1
(
xt

i − ηt∇F (xt
i ; ξ

t
i )
)
, t mod τ = 0

Method Mini-batch SGD Local SGD
# Comm. rounds K K
Batch size nτ n
# Model updates K τK
# Gradient calcs nτK nτK



ECE 5290/7290 & ORIE 5290 33 / 42

Communication vs. computation trade-off

0 10 20 30 40 50 60
Local Steps Between Synchronizations ( )

0.012

0.014

0.016

0.018
Co

nv
er

ge
nc

e 
Er

ro
r

Trade-off in Local SGD: Accuracy vs Communication

0.0

0.2

0.4

0.6

0.8

1.0

Co
m

m
un

ica
tio

n 
Co

st
 (R

el
at

iv
e)

Convergence Error
Communication Cost

Runtime per iteration = Compute + 1
τ

Comm.

Insight: Increasing τ improves efficiency but risks model drift.



ECE 5290/7290 & ORIE 5290 34 / 42

Why Local SGD works under homogeneous data?

If f (x) is convex and all workers start synchronized (xt
i = x̄t):

f (x̄t+τ ) ≤ f (x̄t)− (averaged descent term).

Thus, synchronization preserves global descent.

f (x̄t+τ ) ≤ 1
n

n∑
i=1

fi(xt+τ
i ) ≤ f (x̄t)− (progress).

Not true in general if fi differ across workers (non-i.i.d.).



ECE 5290/7290 & ORIE 5290 35 / 42

Quadratic objectives: analytical insight

For local quadratic objectives fi(x) = 1
2 x⊤Aix − b⊤

i x:

xk+1
i = xk

i − ηk∇fi(xk
i ).

Averaging yields:

E[x̄k+1|Fk ] = x̄k − ηk
1
n

n∑
i=1

∇fi(xk
i ) ≈ x̄k − ηk∇f (x̄k).

Hence, Local SGD mimics global descent dynamics.



ECE 5290/7290 & ORIE 5290 36 / 42

Local SGD improves efficiency in quadratic setting

Theorem 2 (Local SGD under smooth and convex loss)
The error bound for Local SGD with τ local updates equals the bound for
Mini-batch SGD with batch size n and Kτ rounds:

ϵL-SGD :=
1
K

K∑
k=1

E[||∇f (xk)||22] = Θ

(
1

Kτ
+

σ√
nKτ

)

More local updates τ always help convergence.

Mini-batch SGD: ϵMB-SGD = Θ
(

1
K + σ√

nKτ

)
Therefore, Local SGD can be better given the same computation
budget.



ECE 5290/7290 & ORIE 5290 37 / 42

Performance for general convex objectives*

Upper and lower bounds for Local SGD:

Upper: ϵL-SGD = O
(

σ2/3

K 2/3τ 1/3 +
σ√
nKτ

)

Lower: Ω

(
σ2/3

K 2/3τ 2/3 +
σ√
nKτ

)

Mini-batch SGD: Θ
(

1
K + σ√

nKτ

)
Local SGD better when K ≲ τ , worse when K ≳ τ .

Woodworth et al. “Is Local SGD Better than Mini-batch SGD?”, ICML 2020



ECE 5290/7290 & ORIE 5290 38 / 42

Why local SGD may fail under heterogeneous data?

In heterogeneous (non-i.i.d.) data settings, local gradients are misaligned

Local updates diverge due to heterogeneous data (Γ2).
Need additional assumptions to control gradient dissimilarity.
Larger τ ⇒ greater deviation from the global model.



ECE 5290/7290 & ORIE 5290 39 / 42

Summary: Parallel SGD vs local SGD

Aspect Parallel SGD Local SGD

Communication Every iteration Every τ iterations

Local computation 1 gradient step τ local steps

Speed Communication-limited Compute-efficient

Convergence rate Stable Slower ((η2τΓ2) bias)

Best for Data centers, i.i.d. data Federated settings



ECE 5290/7290 & ORIE 5290 40 / 42

Takeaway: Communication - accuracy trade-off

0 10 20 30 40 50 60
Local Steps Between Synchronizations ( )

0.012

0.014

0.016

0.018

Co
nv

er
ge

nc
e 

Er
ro

r

Trade-off in Local SGD: Accuracy vs Communication

0.0

0.2

0.4

0.6

0.8

1.0

Co
m

m
un

ica
tio

n 
Co

st
 (R

el
at

iv
e)

Convergence Error
Communication Cost

τ = 1: fully synchronized (Parallel SGD)
τ > 1: fewer syncs ⇒ faster but drift grows
Choose τ based on network bandwidth and data heterogeneity

Rule of thumb: τ∗ ∝
√

ccomm
ccomp



ECE 5290/7290 & ORIE 5290 41 / 42

When to use Local SGD?

Recommended if:
Communication cost ccomm ≫ ccomp

Data across workers are relatively homogeneous
Occasional synchronization suffices for convergence

Avoid if:
Highly non-i.i.d. data (strong gradient heterogeneity)
Models are unstable to small parameter changes



Recap and fine-tuning

What we have talked about today?
⇒ Data parallelism enables scaling model training across multiple

workers by distributing data and synchronizing models through averaging.
⇒ Parallel SGD achieves global model updates via synchronization.
⇒ Local SGD relaxes synchronization - maintaining learning

efficiency in homogeneous data; drift apart in heterogeneous settings.

Welcome anonymous survey!


	Two Distributed Training Scenarios
	Data Parallelism and Parallel SGD
	Communication Reduction via Local SGD

