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Last-lecture: In-class average consensus game

Each student:
Receives a random integer between 1-10.
Writes it on a piece of paper (your xi(0)).

Network topologies:
Circle: Talk to your left and right neighbor.

Ring Graph

Goal: After 4-5 synchronous rounds of the consensus game, everyone’s
number should approach the same value.
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Results: Initial values of the whole class

Histogram of the workers’ initial values (randomly between 0-10,
mean ≈ 4.4)
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Results: Achieve consensus among the class average

Reach average consensus after 5 rounds of synchronous
communications
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Today: In-class gossip consensus game

Each student:
Receives a random integer between 1-10.
Writes it on a piece of paper (your xi(0)).

Network topologies:
In each round, students randomly select one student as a neighbor.
Those two students exchange and update to their average.

Goal: After several asynchronous rounds of the pairwise consensus
game, everyone’s number should approach the same value.
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Discussion and takeaways

Compare both parts:
How many rounds happened today?
Which converged faster – synchronous or gossip?
Which felt more realistic to how devices communicate?
What if some nodes were disconnected?

Local communication → Global consensus!
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Review: Graph description of a network

Setup: A network of N nodes connected by a graph G = (V, E).

Goal: Each node i has a copy of the average 1
N
∑N

i=1 xi(0).

1 2

34

Node set V:

V = {1, 2, 3, 4}

Edge set E :

E = {(1, 2), (1, 3), (1, 4), (2, 3), (3, 4)}

Average consensus protocol:

xi(k + 1) =
∑

{j:(i,j)∈E}

wijxj(k)
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Problem with synchronous consensus

Average consensus has several limitations:
Synchronization overhead: global clock is challenging and expensive.
Bottlenecks and single points of failure
Lack of robustness to dynamic topologies
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Moving beyond synchronous updates

Gossip: A randomized, and asynchronous average consensus protocol.
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Randomized gossip protocol

Realize consensus using only local, asynchronous communication.

Converge to the global average "in expectation" and with similar
rates as synchronous consensus.
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Pairwise randomized gossip

Consider the basic gossip protocol: only two nodes become active.

Pairwise randomized gossip:
1. At time k, a single edge (i , j) ∈ E is chosen uniformly at random.

2. Nodes i and j exchange and update their states:

For ℓ ∈ {i , j} : xℓ(k + 1) = 1
2xi(k) +

1
2xj(k)

All other nodes remain inactive: xm(k + 1) = xm(k) for m /∈ {i , j}.

Weight matrices are important. What is the weight matrix here?
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Weight matrix of pairwise gossip

The weight matrix W(k) is time-varying and random, e.g.,

1 2

34

W(k) =


1/2 1/2 0 0
1/2 1/2 0 0
0 0 1 0
0 0 0 1



W(k) is doubly stochastic (1T W(k) = 1T and W(k)1 = 1).
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Random weight matrix
At each time, W(k) is selected randomly from a set of matrices,

W(1,2) =


1/2 1/2 0 0
1/2 1/2 0 0
0 0 1 0
0 0 0 1

 W(1,3) =


1/2 0 1/2 0
0 1 0 0

1/2 0 1/2 0
0 0 0 1



W(1,4) =


1/2 0 0 1/2
0 1 0 0
0 0 1 0

1/2 0 0 1/2

 W(2,3) =


1 0 0 0
0 1/2 1/2 0
0 1/2 1/2 0
0 0 0 1



W(3,4) =


1 0 0 0
0 1 0 0
0 0 1/2 1/2
0 0 1/2 1/2


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Why does randomized pairwise gossip ensure consensus?

If we choose W(k) uniformly from all 5 pairwise gossip matrices,

E[W(k)] = W̄ =
1
|E|

 ∑
(i,j)∈E

W(i,j)

 =


7/10 1/10 1/10 1/10
1/10 8/10 1/10 0
1/10 1/10 7/10 1/10
1/10 0 1/10 8/10



W̄ is doubly stochastic.

Reach consensus “in expectation”!

Of course, activating more nodes could be beneficial...
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“Denser” activation

Pairwise randomized gossip protocol: only two nodes become active.

If resources allow, we can activate a subset of nodes S(k) ⊆ V .

1

2
3

4

5

6
7

8

Pairwise Gossip: activate 2 and 4

1

2
3

4

5

6
7

8

Set-averaging Gossip:
S(k) = {2, 4, 6, 8}
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Set-averaging randomized gossip

Set-Averaging Gossip Protocol
At each round k,

1. Randomly activate a subset of nodes U(k) ⊆ V .
2. Construct a doubly stochastic weight matrix W(k)
3. All nodes in U(k) exchange and update their states.

xi(k + 1) =
{∑

j∈U(k) wij(k)xj(k), if i ∈ U(k)
xi(k), if i /∈ U(k)

Set-averaging randomized gossip enables faster information
mixing and more flexible protocol design.

Larger activated sets can accelerate consensus speed.
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Weight matrix of set-averaging randomized gossip

Set-averaging randomized gossip has a time-varying and randomized
weight matrix.

W(k) =



1 0 0 0 0 0 0 0
0 1/2 0 1/4 0 0 0 1/4
0 0 1 0 0 0 0 0
0 1/4 0 1/4 0 1/4 0 1/4
0 0 0 0 1 0 0 0
0 0 0 1/4 0 1/2 0 1/4
0 0 0 0 0 0 1 0
0 1/4 0 1/4 0 1/4 0 1/4



1

2
3

4

5

6
7

8

Set-averaging Gossip:
S(k) = {2, 4, 6, 8}
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Does the randomized algorithm ensure average consensus?

Update equation: The state vector x(k) ∈ Rn evolves via a
product of random matrices:

x(k + 1) = W(k)x(k) =
k∏

j=0
W(j)x(0)

W(k) are randomly chosen from a set of doubly stochastic matrices.

Consensus guarantee? Speed?
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Review: Convergence rate of consensus

Recall the average consensus algorithm (constant weight matrix)

x(k + 1) = Wx(k) = Wkx(0) where x(0) = z ∈ RN

Theorem 1 (Convergence rate of average consensus)
If W is doubly stochastic, it holds for the average consensus protocol that∥∥∥∥x(k)− 11T z

N

∥∥∥∥ ≤ ρk∥z∥,

where ρ = maxi≥2 |λi(W)| < 1.

Q: Does randomized gossip protocol converge in the same rate?
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Expected evolution of randomized gossip

Gossip protocol generates a random sequence {x(k)}

x(k + 1) = W(k)x(k) =
k∏

j=0
W(j)x(0)

It is natural to consider its expected behavior, e.g.,

E[W(j)] = W̄ =
1
|E|

 ∑
(i,j)∈E

W(i,j)

 =


1/2 1/6 1/6 1/6
1/6 1/2 1/6 1/6
1/6 1/6 1/2 1/6
1/6 1/6 1/6 1/2


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Expected evolution of randomized gossip

Consider an independent and identically distributed (i.i.d.) sequence
W(k). Define W̄ = E[W(k)]:

E[x(k + 1)] = E

[ k∏
j=0

W(j)
]

x(0) = (W̄)k+1x(0)

That’s crucial - it iterates like weight matrix is constant.



ECE 5290/7290 & ORIE 5290 24 / 46

Convergence metric for randomized gossip

Review: we used the consensus error in average consensus:

e(k) = x(k)− 1
N 11T x(0)

Convergence metric: norm of the error vector

∥e(k)∥ =

∥∥∥∥x(k)− 11T x(0)
N

∥∥∥∥
∥e(k)∥ is a random variable!
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Convergence metric

For randomized protocols, we often consider the expected error:

E
[
∥e(k)∥2]

By variance decomposition:

E
[
∥e(k)∥2] = ∥E[e(k)]∥2 + Var(e(k))

E
[
∥e(k)∥2]→ 0 implies both expectation and variance of the

consensus error vanish.
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Convergence rate of gossip

Theorem 2 (Convergence rate of gossip)
If W̄ is doubly stochastic, it holds for the gossip protocol that

E

[∥∥∥∥x(k)− 11T z
N

∥∥∥∥2]
≤ (ρ̄)2k∥z∥2,

where ρ̄ = maxi≥2 |λi(W̄)| < 1.

Has the same order as average consensus.
The conclusion from last lecture can be applied here!
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Various graph topologies

Ring Graph: T (ϵ) ∼ O
(
N2) Expander Graph: T (ϵ) ∼ O(log(N))

Torus Graph: T (ϵ) ∼ O(N) Complete Graph: T (ϵ) ∼ O(1)
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Summary of randomized gossip protocol

Principle: In each time step, a small subset of nodes (often just
two) communicate and update their states.
Benefit: High fault tolerance and robustness to network failures or
communication delays; similar consensus rates in expectation.
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Dynamic network model

Randomized gossip protocols induce network dynamics, since active
set varies randomly at each round.

Setup: N nodes connected by a varying graph G(k) = (V, E(k)).

1 2

34

E(k) = {(1, 2), (1, 3), (3, 4)}

1 2

34

E(k) = {(1, 4), (2, 3), (3, 4)}



ECE 5290/7290 & ORIE 5290 31 / 46

Applications of dynamic networks

Dynamic networks are common: network topology often changes
over time due to node mobility, failures, or intermittent connectivity.

Figure: Example of dynamic networks: Internet of Things (IoT).
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Challenge: Construct doubly stochastic weight matrices

Graph topology changes ⇒ weight matrix W(k) changes over time.

Set-averaging gossip protocol
At each round k,

1. Randomly activate a subset of nodes U(k) ⊆ V.
2. Construct a doubly stochastic weight matrix W(k)
3. All nodes in U(k) exchange and update their states.

xi(k + 1) =
{∑

j∈U(k) wij(k)xj(k), if i ∈ U(k)
xi(k), if i /∈ U(k)

Constructing W(k) requires global info. (e.g., graph Laplacian).
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Challenge: Doubly stochastic weight matrices (cont.)

Constructing W(k) at each round is computationally expensive
and not scalable.

Q: Can we compute the average without constructing W(k)?

1

2
3

4

5

6
7

8

Set-averaging Gossip: S(k) = {2, 4, 6, 8}
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Consensus without doubly stochastic weights

We will introduce a physically inspired gossip protocol:

Information diffusion is analogous to mass diffusion.
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Rethinking gossip from the “transfer of mass” perspective

Example: a non-doubly stochastic matrix

W(k) =


1/4 1/4 1/4 0 1/4
1/3 1/3 1/3 0 0
1/4 1/4 1/4 1/4 0
0 0 1/3 1/3 1/3

1/3 0 0 1/3 1/3



1

2

34

5

Interprete xi(k) as "node i possesses material of mass xi(k)".

Node 1:

x1(k + 1) = 1
4 · x1(k) +

1
4 · x2(k) +

1
4 · x3(k) + 0 · x4(k) +

1
4 · x5(k)

w12 = 1/4 means node 2 sends 1/4 of its mass to node 1.
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Rethinking the doubly stochastic requirement

W(k) =


1/4 1/4 1/4 0 1/4
1/3 1/3 1/3 0 0
1/4 1/4 1/4 1/4 0
0 0 1/3 1/3 1/3

1/3 0 0 1/3 1/3



1

2

34

5

Node 2 sends 1/4 of its value to node 1 and 3, leaves 1/3 to itself

w12 + w22 + w32 + w42 + w52 = 1/4 + 1/3 + 1/4 + 0 + 0 = 5/6 < 1

1/6 of x2(k) is lost!
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Rethinking the doubly stochastic requirement (con’t)

In the previous example, j = 2,
∑N

i=1 wij < 1: mass is lost!

Column stochastic (but not necessarily row stochastic) weight
matrix W(k) ensures mass conservation!
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Interpret communication as mass diffusion

Consider a column stochastic weight matrix:

W(k) =


1/4 1/3 1/4 0 1/4
1/4 1/3 1/4 0 0
1/4 1/3 1/4 1/4 0
0 0 1/4 1/4 1/4

1/4 0 0 1/3 1/4



Node 2 sends 1/3 of its mass to node 1, 3, and leaves 1/3 to itself.

No mass is lost!
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Doubly stochastic matrix ensures conservation law

Conservation of mass holds in the whole network

1
N

N∑
i=1

xi(k + 1) = 1
N

N∑
j=1

( N∑
i=1

wij

)
xj(k) =

1
N

N∑
i=1

xi(k)

= · · · = 1
N

N∑
i=1

xi(0) (total mass)

Goal: estimate how much mass is in the network.
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Mass reallocation via diffusion: The push-sum protocol

At each round k, a subset of nodes U(k) ⊆ V is randomly activated.

Each node i ∈ U(k) evenly separates xi(k) into (di + 1) parts and
sends it to its neighbors, where di is the number of i ’s neighbors.

W(k) =


1/4 1/3 1/4 0 1/3
1/4 1/3 1/4 0 0
1/4 1/3 1/4 1/3 0
0 0 1/4 1/3 1/3

1/4 0 0 1/3 1/3



1

2

34

5

Column stochastic, not row stochastic. No consensus among xi(k)!
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Recover the average from stationary distribution

Each state xi(k) converges to

lim
k→∞

xi(k) =
( N∑

i=1
xi(0)

)
πi

If node i knows πi , it can recover the average:

1
N

N∑
i=1

xi(0) =
1

Nπi
lim

k→∞
xi(k)

How to find the distribution πi?
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Compute the stationary distribution

How to find πi? Leverage the mass conservation property again.

Each node i maintains a state si(k), initialized as si(0) = 1/N.

Each node diffuses the si(k) as xi(k) and it converges to

lim
k→∞

si(k) =
( N∑

i=1
si(0)

)
πi = πi

πi can be found by the same push-sum diffusion as well!
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Push-sum gossip protocol

At each round k,
1. Randomly activate a subset of nodes U(k) ⊆ V .
2. All nodes in U(k) compute number of j ’s active neighbors.

dj(k) = |{i : (i , j) ∈ E and i , j ∈ U(k)}|

3. All nodes in U(k) evenly push a part of their state to their neighbors

xi(k + 1) =
{∑

j∈U(k) xj(k)/(dj(k) + 1), if i ∈ U(k)
xi(k), if i /∈ U(k)

si(k + 1) =
{∑

j∈U(k) sj(k)/(dj(k) + 1), if i ∈ U(k)
si(k), if i /∈ U(k)

.

Return: xi (k)
N·si (k) as the estimate of the average.



ECE 5290/7290 & ORIE 5290 44 / 46

Column stochastic weight matrix of push-sum

The number of j ’s active neighbors is defined as

dj(k) = |{i : (i , j) ∈ E and i , j ∈ U(k)}|

The weight matrix W(k) of push-sum gossip protocol is defined as

wij(k) =


1/(dj(k) + 1), if (i , j) ∈ E and i , j ∈ U(k)
1/(dj(k) + 1), if j = i ,
0, otherwise

Lemma 2
The dynamic weight matrix W(k) is a column-stochastic matrix.



ECE 5290/7290 & ORIE 5290 45 / 46

Proof: Column stochastic weight matrix of push-sum

By construction, we have

wij(k) =


1/(dj(k) + 1), if (i , j) ∈ E and i , j ∈ U(k)
1/(dj(k) + 1), if j = i ,
0, otherwise

By definition, for all j ∈ V and k ≥ 0, we have

N∑
i=1

wij(k) =
1

dj(k) + 1 × dj(k) +
1

dj(k) + 1 × 1 + 0

= 1

W(k) is column stochastic for each k.



Recap and fine-tuning

What we have talked about today?
⇒ Randomized gossip avoids costly global clock synchronization.
⇒ Randomized gossip achieves the same consensus rate as average.
⇒ Push-sum achieves this without doubly stochastic matrices.

Welcome anonymous survey!
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