## Distributed Optimization for Machine Learning

Lecture 11 - Average Consensus and Consensus Speed

Tianyi Chen

School of Electrical and Computer Engineering Cornell Tech, Cornell University

October 1, 2025





#### Table of Contents

Average Consensus Protocols

Analysis of Consensus Speed

Dynamic average consensus



### In-class average consensus game

- Each student = one **node** in a distributed network.
- **Each** node *i* holds a number  $x_i(0)$  (your initial value).
- Goal: All nodes converge to the same value the average!

#### Rules of this game:

- 1. You can talk to your assigned **neighbors**.
- 2. In each round, **simultaneously** update your number to the **average** of your number and your neighbors' numbers.

**Goal of this game:** Everyone updates together  $\rightarrow$  Global agreement from local communication!



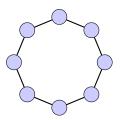
## Step 1: Setup for synchronous consensus

#### Each student:

- Receives a random integer between 1-10.
- Writes it on a piece of paper (your  $x_i(0)$ ).

#### **Network topologies:**

- Line or Circle: Talk to your left and right neighbor.
- (Optional) Instructor can assign a random neighbor graph.



Ring Graph

**Goal:** After several **synchronous rounds** of the consensus game, everyone's number should approach the same value.



### Step 2: Run the synchronous consensus

#### Each round of the game

- 1. Share your current number with your neighbors.
- 2. Compute the average of your number and your neighbors' numbers.
- 3. Replace your number with this average.

#### Repeat 4-5 rounds together.

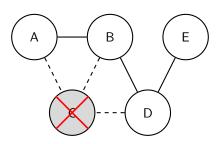
- Observe numbers becoming closer.
- Notice that no one ever sees all other numbers!

Synchronous averaging  $\rightarrow$  Fast and smooth convergence!



## Average consensus - a decentralized algorithm

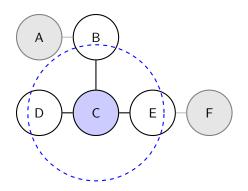
- Robustness: Inherently tolerant to node/link failures and churn. No single point of failure; relies only on local interactions.
- Scalability: Works well in massive, highly dynamic networks where the topology may be unknown or changing.





### Consensus requirement

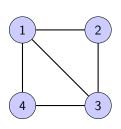
- **Consensus**: All nodes reach agreement on a certain quantity.
- Consensus is crucial for coordination, data fusion, and fairness.
- **Key challenge:** Each node has only an incomplete view of system.





## Graph description of a network

**Setup:** A network of N nodes connected by a graph  $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ .



■ Node set  $\mathcal{V}$ :

$$\mathcal{V}=\{1,2,3,4\}$$

■ Edge set  $\mathcal{E}$ :

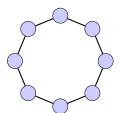
$$\mathcal{E} = \{(1,2), (1,3), (1,4), (2,3), (3,4)\}$$

Adjacency Matrix A:

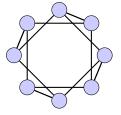
$$\mathbf{A} = \begin{bmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \end{bmatrix}$$



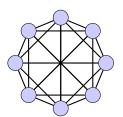
# Various graph



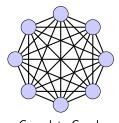
 $\mathsf{Ring}\ \mathsf{Graph}$ 



Torus Graph



Expander Graph



 ${\sf Complete} \,\, {\sf Graph}$ 

#### Average consensus

- **Setup:** Each node *i* holds a local state  $x_i(k)$  at iteration *k*.
- **Input:** Each node *i* receives an input  $z_i$  and initializes  $x_i(0) = z_i$ .
- **Goal:** All nodes must agree on the average of the initial states:

$$x^* = \frac{1}{N} \sum_{i=1}^{N} z_i$$

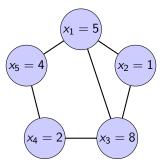
**Constraint:** node i can only communicate with its neighbors  $\mathcal{N}_i$ .



### Decentralized network setup

■ We model the distributed system as a graph.

#### **Example: 5-node Network**



**Consensus goal:** All nodes must converge to  $x^* = 4.0$ 



### Average consensus protocol

#### Average consensus protocol

For  $k = 1, 2, \dots$ , node i update  $x_i$  as a weighted average of its neighbors' states:

$$x_i(k+1) = \sum_{\{j:(i,j)\in\mathcal{E}\}} \frac{w_{ij}}{w_{ij}} x_j(k)$$

For simplicity, we let  $w_{ij} = 0$  if  $(i, j) \notin \mathcal{E}$ .

$$x_i(k+1) = \sum_{j=1}^N w_{ij} x_j(k)$$

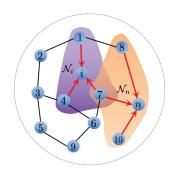
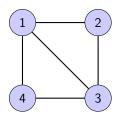


Figure: Synchronous consensus: all nodes update simultaneously using local information.



#### Introduce the weight matrix

■ Weight matrix W is an  $N \times N$  matrix whose (i, j) entry is  $w_{ij}$ .



$$\boldsymbol{W} = \begin{bmatrix} w_{11} & w_{12} & w_{13} & w_{14} \\ w_{21} & w_{22} & w_{23} & 0 \\ w_{31} & w_{32} & w_{33} & w_{34} \\ w_{41} & 0 & w_{43} & w_{44} \end{bmatrix}$$

■ In vector form, the process is a simple linear iteration:

$$\mathbf{x}(k+1) = \mathbf{W}\mathbf{x}(k), \quad \text{where} \quad \mathbf{x}(0) = \mathbf{z} \in \mathbb{R}^N$$
 where  $\mathbf{x}(k) = [x_1(k), x_2(k), \cdots, x_N(k)]^{\top}$  and  $\mathbf{z} = [z_1, z_2, \cdots, z_N]^{\top}$ .



## Properties of the weight matrix W

■ Row stochastic (Row-Sum 1):

$$\sum_{j=1}^{N} W_{ij} = 1, \text{ for all } i.$$

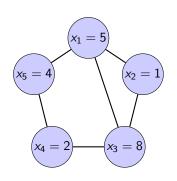
- The weight matrix W is row stochastic since each node takes a weighted average of its neighbors' states.
- As a result, the weight matrix **W** has an eigenvalue  $\lambda_1 = 1$ , with corresponding eigenvector **1** (vector of ones).

$$\mathbf{W1} = \begin{bmatrix} w_{11} & w_{12} & w_{13} & w_{14} \\ w_{21} & w_{22} & w_{23} & 0 \\ w_{31} & w_{32} & w_{33} & w_{34} \\ w_{41} & 0 & w_{43} & w_{44} \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}$$



# How to choose the weights?

Consider a simple choice: equal weights for neighbors



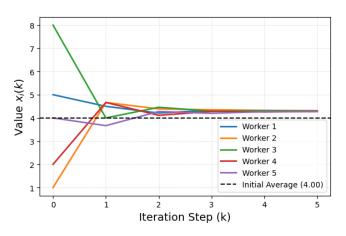
#### ■ Weight matrix W:

$$\mathbf{W} = \begin{bmatrix} 1/4 & 1/4 & 1/4 & 0 & 1/4 \\ 1/3 & 1/3 & 1/3 & 0 & 0 \\ 1/4 & 1/4 & 1/4 & 1/4 & 0 \\ 0 & 0 & 1/3 & 1/3 & 1/3 \\ 1/3 & 0 & 0 & 1/3 & 1/3 \end{bmatrix}$$

■ We expect that  $x_i(k) \to \frac{1}{N} \sum_{i=1}^N z_i = 4$  as  $k \to \infty$ . But...



## Failure to reach average consensus



■ Reach consensus  $\approx$  4.3 but does not converge to the average! Why?



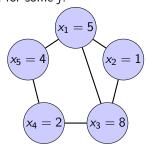
## Failure to reach average consensus (cont.)

• Consider the average  $\frac{1}{N} \sum_{i=1}^{N} x_i(k)$ 

$$\frac{1}{N}\sum_{i=1}^{N}x_{i}(k+1)=\frac{1}{N}\sum_{i=1}^{N}\sum_{j=1}^{N}w_{ij}x_{j}(k)=\frac{1}{N}\sum_{j=1}^{N}\left(\sum_{i=1}^{N}w_{ij}\right)x_{j}(k)$$

■ In the previous example,  $\sum_{i=1}^{N} w_{ij} \neq 1$  for some j.

$$\mathbf{W} = \begin{bmatrix} 1/4 & 1/4 & 1/4 & 0 & 1/4 \\ 1/3 & 1/3 & 1/3 & 0 & 0 \\ 1/4 & 1/4 & 1/4 & 1/4 & 0 \\ 0 & 0 & 1/3 & 1/3 & 1/3 \\ 1/3 & 0 & 0 & 1/3 & 1/3 \end{bmatrix}$$





# Failure to reach average consensus (cont.)

■ In the previous example,  $\sum_{i=1}^{N} w_{ij} \neq 1$  for some j.

$$\mathbf{W} = \begin{bmatrix} 1/4 & 1/4 & 1/4 & 0 & 1/4 \\ 1/3 & 1/3 & 1/3 & 0 & 0 \\ 1/4 & 1/4 & 1/4 & 1/4 & 0 \\ 0 & 0 & 1/3 & 1/3 & 1/3 \\ 1/3 & 0 & 0 & 1/3 & 1/3 \end{bmatrix}$$

Consequently, the average drifts, i.e.,

$$\frac{1}{N}\sum_{i=1}^{N}x_{i}(k+1) = \frac{1}{N}\sum_{j=1}^{N}\left(\sum_{i=1}^{N}w_{ij}\right)x_{j}(k) \neq \frac{1}{N}\sum_{i=1}^{N}x_{i}(k) \neq \cdots \neq \frac{1}{N}\sum_{i=1}^{N}z_{i}$$



## Requirement of weight matrix

We require the following

$$\sum_{i=1}^N \mathbf{w}_{ij} = 1$$

to ensure the average is preserved.

- Column stochastic (Column-Sum 1):  $\sum_{i=1}^{N} \mathbf{w}_{ij} = 1$ .
- Doubly stochastic: Row + Column stochastic.

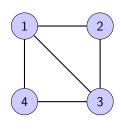
#### Assumption 1

Weight matrix **W** is doubly stochastic.

How to construct a doubly stochastic weight matrix?



## Pierre-Simon Laplace and Graph Laplacian





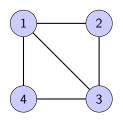
Pierre-Simon Laplace (1749 - 1827)

Laplacian matrix, also called the graph Laplacian, admittance matrix, or discrete Laplacian, is a matrix representation of a graph.



# Graph Laplacian

Consider a 4-node undirected graph:



Adjacency matrix A:

$$\mathbf{A} = \begin{bmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \end{bmatrix}$$

**Degree matrix** D = diag(3, 2, 3, 2)

**Graph Laplacian L** relates directly to the adjacency matrix  ${\bf A}$  and degree matrix  ${\bf D}$ :  ${\bf L}={\bf D}-{\bf A}$ 

$$\mathbf{L} = \begin{bmatrix} 3 & -1 & -1 & -1 \\ -1 & 2 & -1 & 0 \\ -1 & -1 & 3 & -1 \\ -1 & 0 & -1 & 2 \end{bmatrix}$$



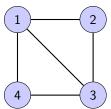
## Construct a doubly stochastic weight matrix

■ Construction: The weight matrix **W** is constructed as

$$\mathbf{W} = \mathbf{I} - c\mathbf{L},$$

where c > 0 is a constant.

**Example:** Choose  $c = 1/(1 + \max\{\mathbf{D}\})$  with  $\max\{\mathbf{D}\}$  denoting the maximum degree, e.g., c = 1/4 in the following example.

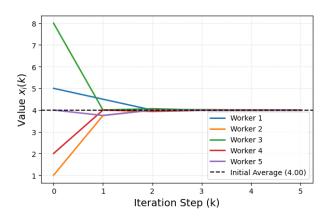


$$\mathbf{W} = \begin{bmatrix} 1/4 & 1/4 & 1/4 & 1/4 \\ 1/4 & 1/2 & 1/4 & 0 \\ 1/4 & 1/4 & 1/4 & 1/4 \\ 1/4 & 0 & 1/4 & 1/2 \end{bmatrix}$$



# Simulation with doubly stochastic weights

■ Reach average consensus if weight matrix is doubly stochastic





#### Table of Contents

Average Consensus Protocols

Analysis of Consensus Speed

Dynamic average consensus



### How fast is consensus process?

Now we investigate how fast the consensus algorithm converges.

$$\mathbf{x}(k+1) = \mathbf{W}\mathbf{x}(k)$$
 where  $\mathbf{x}(0) = \mathbf{z} \in \mathbb{R}^N$ 

- Goal: consensus on  $x^* = \frac{1}{N} \sum_{i=1}^{N} x_i(0) = \frac{1}{N} \mathbf{1}^T \mathbf{z}$
- Consensus error of node i:  $e_i(k) = x_i(k) u^* = x_i(k) \frac{1}{N} \mathbf{1}^T \mathbf{z}$
- We will stack  $e_i(k)$  and use the following property:

$$\mathbf{1}(\frac{1}{N}\mathbf{1}^{T}\mathbf{z}) = \frac{1}{N}\mathbf{1}\mathbf{1}^{T}\mathbf{z} = \begin{bmatrix} \frac{1}{N}\mathbf{1}^{T}\mathbf{z} \\ \frac{1}{N}\mathbf{1}^{T}\mathbf{z} \\ \vdots \\ \frac{1}{N}\mathbf{1}^{T}\mathbf{z} \end{bmatrix}$$
 (Copying  $x^{*}$  to all coordinates)



#### Consensus error metric

Recall the average consensus algorithm

$$\mathbf{x}(k+1) = \mathbf{W}\mathbf{x}(k) = \mathbf{W}^k\mathbf{x}(0)$$
 where  $\mathbf{x}(0) = \mathbf{z} \in \mathbb{R}^N$ 

Stack the errors of all nodes into a vector:

$$\mathbf{e}(k) = \mathbf{x}(k) - \frac{1}{N} \mathbf{1} \mathbf{1}^{\mathsf{T}} \mathbf{z} = \begin{bmatrix} x_1(k) - \frac{1}{N} \mathbf{1}^{\mathsf{T}} \mathbf{z} \\ x_2(k) - \frac{1}{N} \mathbf{1}^{\mathsf{T}} \mathbf{z} \\ \vdots \\ x_N(k) - \frac{1}{N} \mathbf{1}^{\mathsf{T}} \mathbf{z} \end{bmatrix}$$
(1)

**Convergence metric:** norm of e(k)

$$\|\mathbf{e}(k)\| = \left\|\mathbf{x}(k) - \frac{\mathbf{1}\mathbf{1}^T\mathbf{z}}{N}\right\|$$



## Convergence rate of consensus

#### Theorem 1 (Convergence rate of average consensus)

Under Assumption 1, it holds for the average consensus protocol that

$$\left\|\mathbf{x}(k) - \frac{\mathbf{1}\mathbf{1}^T\mathbf{z}}{N}\right\| \leq \rho^k \|\mathbf{z}\|,$$

where  $0 \le \rho < 1$  is a constant that depends on the connectivity of the underlying graph  $\mathcal{G}$ .

**Q**: How  $\rho$  depends on the connectivity of the underlying graph  $\mathcal{G}$ ?



# Using doubly stochastic property\*

Starting from

$$\mathbf{x}(k) - \frac{\mathbf{1}\mathbf{1}^T\mathbf{z}}{N} = \left(\mathbf{W}^k - \frac{\mathbf{1}\mathbf{1}^T}{N}\right)\mathbf{z},$$

we have

$$\mathbf{W}^k - \frac{\mathbf{1}\mathbf{1}^T}{N} = \left(\mathbf{W} - \frac{\mathbf{1}\mathbf{1}^T}{N}\right)^k.$$
 (\*)

**That's crucial** - it allows us to express the error term as repeated multiplication by the same "disagreement operator".

Why it holds? Because W and  $\frac{\mathbf{11}^T}{N}$  commute:

$$\mathbf{W} \frac{\mathbf{1} \mathbf{1}^T}{N} = \frac{\mathbf{1} \mathbf{1}^T}{N} \mathbf{W} = \frac{\mathbf{1} \mathbf{1}^T}{N}.$$

We can then prove using mathematical induction (see next slide).



# Using doubly stochastic property\*

Mathematical induction: Assume the equality (\*) holds for some  $k \ge 1$ :

$$\begin{split} \mathbf{W}^{k+1} - \frac{\mathbf{1}\mathbf{1}^T}{N} &= \mathbf{W}\mathbf{W}^k - \frac{\mathbf{1}\mathbf{1}^T}{N} \\ &= \mathbf{W}(\mathbf{W}^k - \frac{\mathbf{1}\mathbf{1}^T}{N}) + (\mathbf{W}\frac{\mathbf{1}\mathbf{1}^T}{N} - \frac{\mathbf{1}\mathbf{1}^T}{N}) \\ &= \mathbf{W}(\mathbf{W}^k - \frac{\mathbf{1}\mathbf{1}^T}{N}) \quad (\text{since } \mathbf{W}\frac{\mathbf{1}\mathbf{1}^T}{N} = \frac{\mathbf{1}\mathbf{1}^T}{N}) \\ &= \mathbf{W}\left(\mathbf{W} - \frac{\mathbf{1}\mathbf{1}^T}{N}\right)^k \quad (\text{by induction hypothesis}) \\ &= \left(\mathbf{W} - \frac{\mathbf{1}\mathbf{1}^T}{N}\right)^{k+1} \quad (\text{since } \mathbf{W} \text{ and } \frac{\mathbf{1}\mathbf{1}^T}{N} \text{ commute}). \end{split}$$



#### Proof of Theorem 1

■ Partial average converges to the global average as follows

$$\begin{aligned} \left\| \mathbf{x}(k) - \frac{\mathbf{1}\mathbf{1}^{T}\mathbf{z}}{N} \right\| &= \left\| \mathbf{W}^{k}\mathbf{z} - \frac{\mathbf{1}\mathbf{1}^{T}}{N}\mathbf{z} \right\| \\ &= \left\| \left( \mathbf{W}^{k} - \frac{\mathbf{1}\mathbf{1}^{T}}{N} \right) \mathbf{z} \right\| \\ &\leq \left\| \mathbf{W}^{k} - \frac{\mathbf{1}\mathbf{1}^{T}}{N} \right\| \|\mathbf{z}\| \\ &= \left\| \left( \mathbf{W} - \frac{\mathbf{1}\mathbf{1}^{T}}{N} \right)^{k} \right\| \|\mathbf{z}\| \quad \text{(Doubly stochastic)} \\ &\leq \left\| \mathbf{W} - \frac{\mathbf{1}\mathbf{1}^{T}}{N} \right\|^{k} \|\mathbf{z}\| \quad \text{(Sub-multiplicative)} \end{aligned}$$

The convergence rate is determined by  $\left\|\mathbf{W} - \frac{\mathbf{1}\mathbf{1}^T}{N}\right\|$ .



# Proof of Theorem 1 (cont.)

#### Lemma 1

If **W** satisfies Assumption 1, there exists a constant  $\rho \in [0,1)$  such that

$$\left\|\mathbf{W} - \frac{\mathbf{1}\mathbf{1}^T}{N}\right\| \le \rho.$$

■ The convergence rate of average consensus depends on

$$\left\| \mathbf{W} - \frac{\mathbf{1}\mathbf{1}^T}{N} \right\|$$
.

• since  $\frac{\mathbf{11}^T}{N}$  projects any vector onto the "all-equal" subspace,  $\mathbf{W} - \frac{\mathbf{11}^T}{N}$  thus captures *disagreement* after one iteration.



## Key property of doubly stochastic matrices

A matrix **W** is **doubly stochastic** if

$$\mathbf{W}\mathbf{1} = \mathbf{1}$$
 and  $\mathbf{1}^T\mathbf{W} = \mathbf{1}^T$ .

Define the projection onto the consensus subspace:

$$\mathsf{P} := \frac{\mathsf{1}\mathsf{1}^\mathsf{T}}{\mathsf{N}}.$$

Then, because W is doubly stochastic,

$$WP = P$$
 and  $PW = P$ .

**Interpretation:** P projects any vector onto the "all-equal" (consensus) subspace, and W preserves this subspace (it does not change averages).



# Connection to eigenvalues of W

■ When **W** is symmetric and doubly stochastic:

$$1 = \lambda_1(\mathbf{W}) > \lambda_2(\mathbf{W}) \ge \cdots \ge \lambda_N(\mathbf{W}) > -1.$$

- $flux{1}$  is the eigenvector for  $\lambda_1=1$  (the consensus direction). All other eigenvectors are orthogonal to  $flux{1}$  (disagreement directions).
- Since  $\frac{\mathbf{1}\mathbf{1}^T}{N}$  has eigenvalues 1 (for **1**) and 0 otherwise,

$$W - \frac{\mathbf{1}\mathbf{1}^T}{N}$$

has eigenvalues: 0 for  $\mathbf{1}$ , and  $\lambda_i(\mathbf{W})$  for  $i \geq 2$ .



## Spectral gap and consensus speed

■ Therefore, the matrix norm

$$\left\|\mathbf{W} - \frac{\mathbf{1}\mathbf{1}^T}{N}\right\| = \max_{i \geq 2} |\lambda_i(\mathbf{W})| \leq \rho.$$

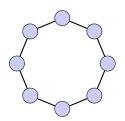
Assuming positive semidefinite of W, define the spectral gap:

$$gap(\mathbf{W}) = 1 - \lambda_2(\mathbf{W}).$$

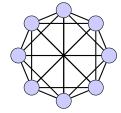
- Large gap  $\Rightarrow$  well-connected graph  $\Rightarrow$  fast consensus.
- Small gap  $\Rightarrow$  weakly connected graph  $\Rightarrow$  slow consensus.
- Examples:
  - Fully connected graph:  $\lambda_2 = 0 \Rightarrow$  consensus in one step.
  - Ring graph:  $\lambda_2 \approx 1 O(1/N^2) \Rightarrow$  slow consensus.



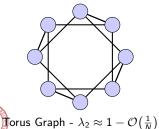
# Various graph topologies



Ring Graph -  $\lambda_2 pprox 1 - \mathcal{O}ig(rac{1}{N^2}ig)$ 



Expander Graph -  $\lambda_2 pprox \mathcal{O}(1)$ 



Complete Graph -  $\lambda_2=0$ 

#### Consensus time

Consensus time  $T_{synch}(\epsilon)$ : the number of iterations k needed to ensure  $\epsilon$  consensus error:

$$\left\| \mathbf{x}(k) - \frac{\mathbf{1}\mathbf{1}^T\mathbf{z}}{N} \right\| \leq \epsilon$$

From previous analysis:

$$\left\|\mathbf{x}(k) - \frac{\mathbf{1}\mathbf{1}^T\mathbf{z}}{N}\right\| \le \rho^k \|\mathbf{z}\|$$

lacksquare For a large network hopprox 1,  $\log(
ho)=\log(1-(1ho))pprox -(1ho)$ 

$$T_{\mathit{synch}}(\epsilon) \leq rac{\log(\epsilon/\|\mathbf{z}\|)}{\log(
ho)} pprox rac{\log(\|\mathbf{z}\|/\epsilon)}{1-
ho}$$

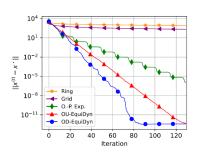
■ What is the order of  $1/(1-\rho)$  for typical graphs?



# Consensus under various graph topologies

■ The spectral gap of the graph strongly limits the consensus rate.

| Network topology      | Consensus rate $\rho$       |
|-----------------------|-----------------------------|
| Ring                  | $O(1 - \frac{1}{n^2})$      |
| $\operatorname{Grid}$ | $O(1 - \frac{1}{n \ln(n)})$ |
| Torus                 | $O(1-\frac{1}{n})$          |
| ExpoGraph             | $O(1 - \frac{1}{\ln(n)})$   |
| ${\bf GeoMedian}$     | $O(1 - \frac{\ln(n)}{n})$   |
| Erdos-Renyi           | O(1)                        |
| EquiGraph             | O(1)                        |



Simulation results are from [Song et. al., NeurIPS 2022]

■ Takeaway: Well-connected graphs (like Expander Graphs) have large spectral gaps, enabling fast convergence.



#### Table of Contents

Average Consensus Protocols

Analysis of Consensus Speed

Dynamic average consensus



### Why dynamic average consensus?

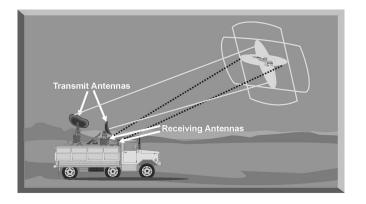


Figure: Sensing and moving target tracking.



## Dynamic consensus protocol

■ Recall the average consensus algorithm

$$\mathbf{x}(k+1) = \mathbf{W}\mathbf{x}(k)$$
 where  $\mathbf{x}(0) = \mathbf{z} \in \mathbb{R}^N$ 

- Average consensus tracks the global average of the static input z
- If the input is changing with iteration, can we still be able to track the global average of the dynamic  $\mathbf{z}(k)$ ?

#### Dynamic average consensus protocol

For  $k = 1, 2, \cdots$ , node *i* update  $x_i$  as a weighted average of its neighbors:

$$x(k+1) = Wx(k) + z(k+1) - z(k)$$
 where  $x(0) = z(0)$ 



## Tracking property

■ The dynamic average consensus recursion:

$$x(k+1) = Wx(k) + z(k+1) - z(k)$$
 where  $x(0) = z(0)$ 

■ Left-multiplying  $(1/N)\mathbf{1}^T$  to both sides of the above recursion

$$\begin{split} &\left(\frac{1}{N}\sum_{j=1}^{N}x_{j}(k+1)\right)\mathbf{1}\\ &=\left(\frac{1}{N}\sum_{j=1}^{N}x_{j}(k)\right)\mathbf{1}+\left(\frac{1}{N}\sum_{j=1}^{N}z_{j}(k+1)\right)\mathbf{1}-\left(\frac{1}{N}\sum_{j=1}^{N}z_{j}(k)\right)\mathbf{1}\\ &=\left(\frac{1}{N}\sum_{j=1}^{N}z_{j}(k+1)\right)\mathbf{1}\quad \text{(tracks the global average of dynamic input)} \end{split}$$



# Analyze tracking errors

Now we define

$$\overline{\mathbf{x}}(k) = \left(\frac{1}{n}\sum_{j=1}^n x_j(k)\right)\mathbf{1} \in \mathbb{R}^n \quad \text{and} \quad \overline{\mathbf{z}}(k) = \left(\frac{1}{n}\sum_{j=1}^n z_j(k)\right)\mathbf{1} \in \mathbb{R}^n$$

■ With the recursion of  $\overline{\mathbf{x}}(k)$  in the last page, we have

$$\begin{aligned} &\|\mathbf{x}(k+1) - \overline{\mathbf{x}}(k+1)\|^2 \\ &= \|\mathbf{W}(\mathbf{x}(k) - \overline{\mathbf{x}}(k)) + \mathbf{\Delta}(k+1) - \overline{\mathbf{\Delta}}(k+1)\|^2 \\ &= \|(\mathbf{W} - \mathbf{1}\mathbf{1}^T/n)(\mathbf{x}(k) - \overline{\mathbf{x}}(k)) + \mathbf{\Delta}(k+1) - \overline{\mathbf{\Delta}}(k+1)\|^2 \\ &\leq \rho \|\mathbf{x}(k) - \overline{\mathbf{x}}(k)\|^2 + \frac{1}{1-\rho} \|\mathbf{\Delta}(k+1)\|^2 \end{aligned}$$

where 
$$\Delta(k) = \mathbf{z}(k) - \mathbf{z}(k-1)$$
 and  $\overline{\Delta}(k) = \overline{\mathbf{z}}(k) - \overline{\mathbf{z}}(k-1)$ .



## Asymptotic behavior

■ If the dynamic input oscillates in a small range, i.e.,  $\|\mathbf{\Delta}(k)\| = \epsilon$ ,

$$\lim_{k\to\infty}\|\mathbf{x}(k)-\overline{\mathbf{x}}(k)\|=\frac{\epsilon}{1-\rho}$$

- Dynamic consensus converges to a small neighborhood around  $\bar{\mathbf{x}}(k)$
- If the dynamic input converges to stationary points, i.e.,  $\|\Delta(k)\| \to 0$ , it holds that

$$\lim_{k\to\infty}\|\mathbf{x}(k)-\overline{\mathbf{x}}(k)\|=0$$

■ The convergence rate is determined by both  $\rho$  and the rate at which  $\Delta(k)$  approaches 0



### Recap and fine-tuning

- What we have talked about today?
  - ⇒ **Consensus** protocols enable robust, decentralized computation, ranging from static averaging to **dynamic signal tracking**.
    - $\Rightarrow$  **To ensure consensus**, we require **W** to be doubly stochastic.
  - $\Rightarrow$  The consensus speed largely depends on graph topology Well-connected graphs (e.g., complete graphs) enable rapid consensus.







