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In-class average consensus game

Each student = one node in a distributed network.
Each node i holds a number xi(0) (your initial value).
Goal: All nodes converge to the same value - the average!

Rules of this game:
1. You can talk to your assigned neighbors.
2. In each round, simultaneously update your number to the average

of your number and your neighbors’ numbers.

Goal of this game: Everyone updates together → Global agreement
from local communication!
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Step 1: Setup for synchronous consensus

Each student:
Receives a random integer between 1-10.
Writes it on a piece of paper (your xi(0)).

Network topologies:
Line or Circle: Talk to your left and right
neighbor.
(Optional) Instructor can assign a random
neighbor graph.

Ring Graph

Goal: After several synchronous rounds of the consensus game,
everyone’s number should approach the same value.
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Step 2: Run the synchronous consensus

Each round of the game

1. Share your current number with your neighbors.
2. Compute the average of your number and your neighbors’ numbers.
3. Replace your number with this average.

Repeat 4-5 rounds together.
Observe numbers becoming closer.
Notice that no one ever sees all other numbers!

Synchronous averaging → Fast and smooth convergence!
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Average consensus - a decentralized algorithm

Robustness: Inherently tolerant to node/link failures and churn. No
single point of failure; relies only on local interactions.

Scalability: Works well in massive, highly dynamic networks where
the topology may be unknown or changing.

A B

C D

E
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Consensus requirement

Consensus: All nodes reach agreement on a certain quantity.
Consensus is crucial for coordination, data fusion, and fairness.
Key challenge: Each node has only an incomplete view of system.

A B

CD E F
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Graph description of a network

Setup: A network of N nodes connected by a graph G = (V, E).

1 2

34

Node set V:

V = {1, 2, 3, 4}

Edge set E :

E = {(1, 2), (1, 3), (1, 4), (2, 3), (3, 4)}

Adjacency Matrix A:

A =


0 1 1 1
1 0 1 0
1 1 0 1
1 0 1 0


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Various graph

Ring Graph Expander Graph

Torus Graph Complete Graph
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Average consensus

Setup: Each node i holds a local state xi(k) at iteration k.
Input: Each node i receives an input zi and initializes xi(0) = zi .
Goal: All nodes must agree on the average of the initial states:

x∗ =
1
N

N∑
i=1

zi

Constraint: node i can only communicate with its neighbors Ni .
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Decentralized network setup

We model the distributed system as a graph.

Example: 5-node Network

x1 = 5

x2 = 1

x3 = 8x4 = 2

x5 = 4

Consensus goal: All nodes must converge to x∗ = 4.0



ECE 5290/7290 & ORIE 5290 12 / 44

Average consensus protocol

Average consensus protocol
For k = 1, 2, · · · , node i update xi as a
weighted average of its neighbors’ states:

xi(k + 1) =
∑

{j:(i,j)∈E}

wijxj(k)

For simplicity, we let wij = 0 if (i , j) /∈ E .

xi(k + 1) =
N∑

j=1
wijxj(k)

Figure: Synchronous consensus:
all nodes update simultaneously
using local information.
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Introduce the weight matrix

Weight matrix W is an N × N matrix whose (i , j) entry is wij .

1 2

34

W =


w11 w12 w13 w14
w21 w22 w23 0
w31 w32 w33 w34
w41 0 w43 w44



In vector form, the process is a simple linear iteration:

x(k + 1) = Wx(k), where x(0) = z ∈ RN

where x(k) = [x1(k), x2(k), · · · , xN(k)]⊤ and z = [z1, z2, · · · , zN ]
⊤.
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Properties of the weight matrix W

Row stochastic (Row-Sum 1):

N∑
j=1

Wij = 1, for all i .

The weight matrix W is row stochastic since each node takes a
weighted average of its neighbors’ states.

As a result, the weight matrix W has an eigenvalue λ1 = 1, with
corresponding eigenvector 1 (vector of ones).

W1 =


w11 w12 w13 w14
w21 w22 w23 0
w31 w32 w33 w34
w41 0 w43 w44




1
1
1
1

 =


1
1
1
1


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How to choose the weights?

Consider a simple choice: equal weights for neighbors

x1 = 5

x2 = 1

x3 = 8x4 = 2

x5 = 4
Weight matrix W:

W =


1/4 1/4 1/4 0 1/4
1/3 1/3 1/3 0 0
1/4 1/4 1/4 1/4 0
0 0 1/3 1/3 1/3

1/3 0 0 1/3 1/3



We expect that xi(k) → 1
N
∑N

i=1 zi = 4 as k → ∞. But...
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Failure to reach average consensus

Reach consensus ≈ 4.3 but does not converge to the average! Why?
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Failure to reach average consensus (cont.)

Consider the average 1
N
∑N

i=1 xi(k)

1
N

N∑
i=1

xi(k + 1) = 1
N

N∑
i=1

N∑
j=1

wijxj(k) =
1
N

N∑
j=1

( N∑
i=1

wij

)
xj(k)

In the previous example,
∑N

i=1 wij ̸= 1 for some j .

W =


1/4 1/4 1/4 0 1/4
1/3 1/3 1/3 0 0
1/4 1/4 1/4 1/4 0
0 0 1/3 1/3 1/3

1/3 0 0 1/3 1/3



x1 = 5

x2 = 1

x3 = 8x4 = 2

x5 = 4
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Failure to reach average consensus (cont.)

In the previous example,
∑N

i=1 wij ̸= 1 for some j .

W =


1/4 1/4 1/4 0 1/4
1/3 1/3 1/3 0 0
1/4 1/4 1/4 1/4 0
0 0 1/3 1/3 1/3

1/3 0 0 1/3 1/3


Consequently, the average drifts, i.e.,

1
N

N∑
i=1

xi(k+1) = 1
N

N∑
j=1

( N∑
i=1

wij

)
xj(k) ̸=

1
N

N∑
i=1

xi(k) ̸= · · · ̸= 1
N

N∑
i=1

zi
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Requirement of weight matrix

We require the following
N∑

i=1
wij = 1

to ensure the average is preserved.

Column stochastic (Column-Sum 1):
∑N

i=1 wij = 1.
Doubly stochastic: Row + Column stochastic.

Assumption 1
Weight matrix W is doubly stochastic.

How to construct a doubly stochastic weight matrix?
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Pierre-Simon Laplace and Graph Laplacian

1 2

34
Pierre-Simon Laplace (1749 - 1827)

Laplacian matrix, also called the graph Laplacian, admittance matrix, or
discrete Laplacian, is a matrix representation of a graph.
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Graph Laplacian

Consider a 4-node undirected graph:

1 2

34

Adjacency matrix A:

A =


0 1 1 1
1 0 1 0
1 1 0 1
1 0 1 0


Degree matrix
D = diag(3, 2, 3, 2)

Graph Laplacian L relates directly to the adjacency matrix A and degree
matrix D: L = D − A

L =


3 −1 −1 −1
−1 2 −1 0
−1 −1 3 −1
−1 0 −1 2


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Construct a doubly stochastic weight matrix

Construction: The weight matrix W is constructed as

W = I − cL,

where c > 0 is a constant.

Example: Choose c = 1/(1 +max{D}) with max{D} denoting the
maximum degree, e.g., c = 1/4 in the following example.

1 2

34

W =


1/4 1/4 1/4 1/4
1/4 1/2 1/4 0
1/4 1/4 1/4 1/4
1/4 0 1/4 1/2


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Simulation with doubly stochastic weights

Reach average consensus if weight matrix is doubly stochastic
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How fast is consensus process?

Now we investigate how fast the consensus algorithm converges.

x(k + 1) = Wx(k) where x(0) = z ∈ RN

Goal: consensus on x∗ = 1
N
∑N

i=1 xi(0) = 1
N 1T z

Consensus error of node i : ei(k) = xi(k)− u∗ = xi(k)− 1
N 1T z

We will stack ei(k) and use the following property:

1( 1
N 1T z) = 1

N 11T z =


1
N 1T z
1
N 1T z

...
1
N 1T z

 (Copying x∗ to all coordinates)
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Consensus error metric

Recall the average consensus algorithm

x(k + 1) = Wx(k) = Wkx(0) where x(0) = z ∈ RN

Stack the errors of all nodes into a vector:

e(k) = x(k)− 1
N 11T z =


x1(k)− 1

N 1T z
x2(k)− 1

N 1T z
...

xN(k)− 1
N 1T z

 (1)

Convergence metric: norm of e(k)

∥e(k)∥ =

∥∥∥∥x(k)− 11T z
N

∥∥∥∥
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Convergence rate of consensus

Theorem 1 (Convergence rate of average consensus)
Under Assumption 1, it holds for the average consensus protocol that∥∥∥∥x(k)− 11T z

N

∥∥∥∥ ≤ ρk∥z∥,

where 0 ≤ ρ < 1 is a constant that depends on the connectivity of the
underlying graph G.

Q: How ρ depends on the connectivity of the underlying graph G?
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Using doubly stochastic property*

Starting from

x(k)− 11T z
N =

(
Wk − 11T

N

)
z,

we have

Wk − 11T

N =

(
W − 11T

N

)k

. (∗)

That’s crucial - it allows us to express the error term as repeated
multiplication by the same “disagreement operator”.

Why it holds? Because W and 11T

N commute:

W11T

N =
11T

N W =
11T

N .

We can then prove using mathematical induction (see next slide).
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Using doubly stochastic property*

Mathematical induction: Assume the equality (*) holds for some k ≥ 1:

Wk+1 − 11T

N = WWk − 11T

N

= W(Wk − 11T

N ) + (W11T

N − 11T

N )

= W(Wk − 11T

N ) (since W11T

N =
11T

N )

= W
(

W − 11T

N

)k

(by induction hypothesis)

=

(
W − 11T

N

)k+1

(since W and 11T

N commute).
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Proof of Theorem 1

Partial average converges to the global average as follows∥∥∥∥x(k)− 11T z
N

∥∥∥∥ =

∥∥∥∥Wkz − 11T

N z
∥∥∥∥

=

∥∥∥∥(Wk − 11T

N

)
z
∥∥∥∥

≤
∥∥∥∥Wk − 11T

N

∥∥∥∥ ∥z∥

=

∥∥∥∥∥
(

W − 11T

N

)k∥∥∥∥∥ ∥z∥ (Doubly stochastic)

≤
∥∥∥∥W − 11T

N

∥∥∥∥k

∥z∥ (Sub-multiplicative)

The convergence rate is determined by
∥∥∥W − 11T

N

∥∥∥.
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Proof of Theorem 1 (cont.)

Lemma 1
If W satisfies Assumption 1, there exists a constant ρ ∈ [0, 1) such that∥∥∥∥W − 11T

N

∥∥∥∥ ≤ ρ.

The convergence rate of average consensus depends on∥∥∥∥W − 11T

N

∥∥∥∥ .
since 11T

N projects any vector onto the “all-equal” subspace,

W − 11T

N thus captures disagreement after one iteration.
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Key property of doubly stochastic matrices

A matrix W is doubly stochastic if

W1 = 1 and 1T W = 1T .

Define the projection onto the consensus subspace:

P :=
11T

N .

Then, because W is doubly stochastic,

WP = P and PW = P.

Interpretation: P projects any vector onto the “all-equal” (consensus)
subspace, and W preserves this subspace (it does not change averages).
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Connection to eigenvalues of W

When W is symmetric and doubly stochastic:

1 = λ1(W) > λ2(W) ≥ · · · ≥ λN(W) > −1.

1 is the eigenvector for λ1 = 1 (the consensus direction).
All other eigenvectors are orthogonal to 1 (disagreement directions).
Since 11T

N has eigenvalues 1 (for 1) and 0 otherwise,

W − 11T

N

has eigenvalues: 0 for 1, and λi(W) for i ≥ 2.
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Spectral gap and consensus speed

Therefore, the matrix norm∥∥∥∥W − 11T

N

∥∥∥∥ = max
i≥2

|λi(W)| ≤ ρ.

Assuming positive semidefinite of W, define the spectral gap:

gap(W) = 1 − λ2(W).

Large gap ⇒ well-connected graph ⇒ fast consensus.
Small gap ⇒ weakly connected graph ⇒ slow consensus.
Examples:

• Fully connected graph: λ2 = 0 ⇒ consensus in one step.
• Ring graph: λ2 ≈ 1 − O(1/N2) ⇒ slow consensus.
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Various graph topologies

Ring Graph - λ2 ≈ 1 −O
( 1

N2

)
Expander Graph - λ2 ≈ O(1)

Torus Graph - λ2 ≈ 1 −O
( 1

N
)

Complete Graph - λ2 = 0
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Consensus time

Consensus time Tsynch(ϵ): the number of iterations k needed to ensure ϵ
consensus error: ∥∥∥∥x(k)− 11T z

N

∥∥∥∥ ≤ ϵ

From previous analysis:∥∥∥∥x(k)− 11T z
N

∥∥∥∥ ≤ ρk∥z∥

For a large network ρ ≈ 1, log(ρ) = log(1 − (1 − ρ)) ≈ −(1 − ρ)

Tsynch(ϵ) ≤
log(ϵ/∥z∥)
log(ρ)

≈ log(∥z∥/ϵ)
1 − ρ

What is the order of 1/(1 − ρ) for typical graphs?
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Consensus under various graph topologies

The spectral gap of the graph strongly limits the consensus rate.

Takeaway: Well-connected graphs (like Expander Graphs) have
large spectral gaps, enabling fast convergence.
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Why dynamic average consensus?

Figure: Sensing and moving target tracking.
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Dynamic consensus protocol

Recall the average consensus algorithm

x(k + 1) = Wx(k) where x(0) = z ∈ RN

Average consensus tracks the global average of the static input z
If the input is changing with iteration, can we still be able to track
the global average of the dynamic z(k)?

Dynamic average consensus protocol
For k = 1, 2, · · · , node i update xi as a weighted average of its neighbors:

x(k + 1) = Wx(k) + z(k + 1)− z(k) where x(0) = z(0)
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Tracking property

The dynamic average consensus recursion:

x(k + 1) = Wx(k) + z(k + 1)− z(k) where x(0) = z(0)

Left-multiplying (1/N)1T to both sides of the above recursion(
1
N

N∑
j=1

xj(k + 1)
)

1

=

(
1
N

N∑
j=1

xj(k)
)

1 +

(
1
N

N∑
j=1

zj(k + 1)
)

1 −

(
1
N

N∑
j=1

zj(k)
)

1

=

(
1
N

N∑
j=1

zj(k + 1)
)

1 (tracks the global average of dynamic input)
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Analyze tracking errors

Now we define

x(k) =
(

1
n

n∑
j=1

xj(k)
)

1 ∈ Rn and z(k) =
(

1
n

n∑
j=1

zj(k)
)

1 ∈ Rn

With the recursion of x(k) in the last page, we have

∥x(k + 1)− x(k + 1)∥2

=∥W(x(k)− x(k)) +∆(k + 1)−∆(k + 1)∥2

=∥(W − 11T/n)(x(k)− x(k)) +∆(k + 1)−∆(k + 1)∥2

≤ρ∥x(k)− x(k)∥2 +
1

1 − ρ
∥∆(k + 1)∥2

where ∆(k) = z(k)− z(k − 1) and ∆(k) = z(k)− z(k − 1).
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Asymptotic behavior

If the dynamic input oscillates in a small range, i.e., ∥∆(k)∥ = ϵ,

lim
k→∞

∥x(k)− x(k)∥ =
ϵ

1 − ρ

Dynamic consensus converges to a small neighborhood around x(k)
If the dynamic input converges to stationary points, i.e.,
∥∆(k)∥ → 0, it holds that

lim
k→∞

∥x(k)− x(k)∥ = 0

The convergence rate is determined by both ρ and the rate at which
∆(k) approaches 0



Recap and fine-tuning

What we have talked about today?
⇒ Consensus protocols enable robust, decentralized computation,

ranging from static averaging to dynamic signal tracking.
⇒ To ensure consensus, we require W to be doubly stochastic.
⇒ The consensus speed largely depends on graph topology -

Well-connected graphs (e.g., complete graphs) enable rapid consensus.

Welcome anonymous survey!
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