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In-class average consensus game

m Each student = one node in a distributed network.
m Each node i holds a number x;(0) (your initial value).

m Goal: All nodes converge to the same value - the average!

Rules of this game:
1. You can talk to your assigned neighbors.

2. In each round, simultaneously update your number to the average
of your number and your neighbors’ numbers.

Goal of this game: Everyone updates together — Global agreement
from local communication!

&
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Step 1: Setup for synchronous consensus

Each student:
m Receives a random integer between 1-10.
m Writes it on a piece of paper (your x;(0)).

Network topologies:

m Line or Circle: Talk to your left and right
neighbor.

m (Optional) Instructor can assign a random Ring Graph
neighbor graph.

Goal: After several synchronous rounds of the consensus game,
everyone's number should approach the same value.
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Step 2: Run the synchronous consensus

Each round of the game

1. Share your current number with your neighbors.
2. Compute the average of your number and your neighbors’ numbers.

3. Replace your number with this average.

Repeat 4-5 rounds together.
m Observe numbers becoming closer.

m Notice that no one ever sees all other numbers!

Synchronous averaging — Fast and smooth convergence!

©)
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Average consensus - a decentralized algorithm

m Robustness: Inherently tolerant to node/link failures and churn. No
single point of failure; relies only on local interactions.

m Scalability: Works well in massive, highly dynamic networks where
the topology may be unknown or changing.
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Consensus requirement

m Consensus: All nodes reach agreement on a certain quantity.
m Consensus is crucial for coordination, data fusion, and fairness.

m Key challenge: Each node has only an incomplete view of system.
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Graph description of a network

m Setup: A network of N nodes connected by a graph G = (V, ).
= Node set V:

V=1{1,2,3,4}
° 9 m Edge set &:
&= {(1’2)7 (1’3)’ (174)v (253)7 (3’4)}

m Adjacency Matrix A:

=== O
O = O
= O R
O O R
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Various graph

Ring Graph

Torus Graph
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Expander Graph

Complete Graph
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Average consensus

m Setup: Each node i holds a local state x;(k) at iteration k.

Input: Each node i receives an input z; and initializes x;(0) = z;.

m Goal: All nodes must agree on the average of the initial states:

N
L 1
X = E Zj
i=1

Constraint: node i can only communicate with its neighbors ;.

=
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Decentralized network setup

m We model the distributed system as a graph.

Example: 5-node Network

Consensus goal: All nodes must converge to x* = 4.0

&
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Average consensus protocol

Average consensus protocol

For k =1,2,---, node i update x; as a
weighted average of its neighbors’ states:

xi(k+1)= Z wix;(k)

{:(i.))e€}

For simplicity, we let w;; =0 if (i,/) ¢ €.

N Figure: Synchronous consensus:
xi(k +1) = Z Winj(k) all nodes update simultaneously
j=1 using local information.
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Introduce the weight matrix

m Weight matrix W is an N x N matrix whose (i,/) entry is w;;.

w11
W21
w31

(O—& v

W12
W22
w32

m In vector form, the process is a simple linear iteration:

x(k +1) = Wx(k), where x(0)=zcR"

where x(k) = [x1(k), x2(k),- -+, xn(k)]T and z = [z1, 20, - -
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W33
W43
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W34
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Properties of the weight

matrix W

m Row stochastic (Row-Sum 1):

N

> Wy =1, foralli.
Jj=1

m The weight matrix W is row stochastic since each node takes a
weighted average of its neighbors’ states.

m As a result, the weight matrix W has an eigenvalue A\; = 1, with
corresponding eigenvector 1 (vector of ones).

W1 =

Wi Wiz Wig

W2 W23 0

W32 W33 Wag
0 wiz wa

=R
|
=
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How to choose the weights?

m Consider a simple choice: equal weights for neighbors

@ m Weight matrix W:
@ @ 1/4 1/4 1/4 0 1/4
1/3 1/3 1/3 0 0
W= |(1/4 1/4 1/4 1/4 0
@ @ o 0 1/3 1/3 1/3

1/3 0 0 1/3 1/3

m We expect that x;(k) — & Zf\lzl zi =4 as k — co. But...

&
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Failure to reach average consensus

= Worker 1
—— \Morker 2
— \Worker 3
= \Worker 4
—— Worker 5
——- Initial Average (4.00)

Value x;(k)

0 1 2 3 4 5
Iteration Step (k)

m Reach consensus ~ 4.3 but does not converge to the average! Why?
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Failure to reach average consensus (cont.)

m Consider the average £ S | x;(k)

N
Z (k+1)

ZZ Wi (K) = ~ o (Z w,-,-)xxk)

1111 j:].

m In the previous example, Zf\lzl wj; # 1 for some j.

1/4
1/3
W= |1/4
0
1/3

1/4
1/3
1/4

0
0

1/4
1/3
1/4
1/3
0

0 GO
1/4 0

1/3 1/3

1/3 1/3
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Failure to reach average consensus (cont.)

m In the previous example, vazl wj; # 1 for some j.

1/4
1/3
W= [1/4
0
1/3

1/4

1/3

1/4
0
0

1/4
1/3
1/4
1/3
0

m Consequently, the average drifts, i.e.,

= 3 (3w

i=1

i=1 J 1

P

0 1/4
0 0
1/4 0
1/3 1/3
1/3 1/3

1 N
)£ 2 Dk £
i=1
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Requirement of weight matrix

We require the following
N
> wy=1
i=1
to ensure the average is preserved.

m Column stochastic (Column-Sum 1): vazl wj = 1.

m Doubly stochastic: Row 4+ Column stochastic.

Assumption 1

Weight matrix W is doubly stochastic.
= How to construct a doubly stochastic weight matrix?

@
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Pierre-Simon Laplace and Graph Laplacian

H>—@

Pierre-Simon Laplace (1749 - 1827)

Laplacian matrix, also called the graph Laplacian, admittance matrix, or
discrete Laplacian, is a matrix representation of a graph.
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Graph Laplacian

Consider a 4-node undirected graph: m Adjacency matrix A:
e
1010
A= 1101
1010

° o m Degree matrix
D = diag(3,2,3,2)
Graph Laplacian L relates directly to the adjacency matrix A and degree
matrix D: L=D — A
3 -1 -1 -1

-1 2 -1 0
L= -1 -1 3 -1
-1 0 -1 2
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Construct a doubly stochastic weight matrix

m Construction: The weight matrix W is constructed as

W=1—cL,

where ¢ > 0 is a constant.

m Example: Choose ¢ = 1/(1 + max{D}) with max{D} denoting the
maximum degree, e.g., ¢ = 1/4 in the following example.

1/4
1/4
1/4

° e 1/4
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1/2

1/4
0

1/4
1/4
1/4
1/4

1/4
0
1/4
1/2
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Simulation with doubly stochastic weights

m Reach average consensus if weight matrix is doubly stochastic

= Worker 1
— Worker 2
— Worker 3
= Worker 4
= Worker 5
=== Initial Average (4.00)

Value x(k)

0 1 2 3 4 5
Iteration Step (k)
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How fast is consensus process?

m Now we investigate how fast the consensus algorithm converges.

x(k +1) = Wx(k) where x(0)=z¢cR"
= Goal: consensus on x* = L 57 x,(0) = 1172
m Consensus error of node i: e;(k) = x;(k) — u* = xi(k) — %17z
m We will stack e;(k) and use the following property:

117,
117,

2[—=2

1 1
I(NITZ) = NHTZ = (Copying x™ to all coordinates)
117,

N
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Consensus error metric

m Recall the average consensus algorithm
x(k 4+ 1) = Wx(k) = W*x(0) where x(0)=z¢c RN

m Stack the errors of all nodes into a vector:

Xl(k) N].TZ
xo(k) — £17
() = x(k) - L1177 — | 2T )
XN(k) — %ITZ
m Convergence metric: norm of e(k)
1172
leCk)ll = ||x(k) = —
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Convergence rate of consensus

Theorem 1 (Convergence rate of average consensus)

Under Assumption 1, it holds for the average consensus protocol that

1172

x(k) = < p¥lzll,

where 0 < p < 1 is a constant that depends on the connectivity of the
underlying graph G.

Q: How p depends on the connectivity of the underlying graph G?7

&
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Usi

€

ng doubly stochastic property*

Starting from

we have

N N

That’s crucial - it allows us to express the error term as repeated
multiplication by the same “disagreement operator”.

wk—gz (W—uT>k. (%)

Why it holds? Because W and % commute:

117 117 117
Wy =wvW=w

We can then prove using mathematical induction (see next slide).
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Using doubly stochastic property*

Mathematical induction: Assume the equality (*) holds for some k > 1:

11 117
WHHT 22— Wwk - T
N N
117 117 117
_ k _
=W(W N )+ (W m y )

17 117 117
— k . i _—
=W(W N ) (since W N N )

117\"
= W(W - N> (by induction hypothesis)

1\t 117
= (W — N> (since W and N commute).
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Proof of Theorem 1

m Partial average converges to the global average as follows

1172
N

x(k) —

<

__m The convergence rate

sz — TZ
117

(Wk — N) z

17
wh — N 2|

117\" _

W — N Izl (Doubly stochastic)
17|

W — N IE4] (Sub-multiplicative)

: : 17
is determined by HW — TH
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Proof of Theorem 1 (cont.)

Lemma 1
If W satisfies Assumption 1, there exists a constant p € [0, 1) such that

17

— || <.
A

m The convergence rate of average consensus depends on

117
W
. 117 ) " "
m since N projects any vector onto the “all-equal” subspace,
T

W — N thus captures disagreement after one iteration.
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Key property of doubly stochastic matrices

A matrix W is doubly stochastic if
Wl=1 and 1"W=1".

Define the projection onto the consensus subspace:

Then, because W is doubly stochastic,
WP =P and PW=P.

Interpretation: P projects any vector onto the “all-equal” (consensus)
subspace, and W preserves this subspace (it does not change averages).

©)
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Connection to eigenvalues of W

m When W is symmetric and doubly stochastic:

1= )\1(W) > )\z(W) > 2> )\N(W) > —1.

m 1 is the eigenvector for A\; = 1 (the consensus direction).
All other eigenvectors are orthogonal to 1 (disagreement directions).

m Since % has eigenvalues 1 (for 1) and 0 otherwise,

117
W-— ——
N

has eigenvalues: 0 for 1, and \;(W) for i > 2.
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Spectral gap and consensus speed

m Therefore, the matrix norm
117
_ - . <
w0 = maxvwr <
m Assuming positive semidefinite of W, define the spectral gap:

gap(W) =1 — Xo(W).

Large gap = well-connected graph = fast consensus.

Small gap = weakly connected graph = slow consensus.

Examples:

Fully connected graph: A2 = 0 = consensus in one step.
Ring graph: \> &~ 1 — O(1/N?) = slow consensus.

ECE 5290/7290 & ORIE 5290
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Various graph topologies

Ring Graph - X & 1 — O( ) Expander Graph - A\, =~ O(1)

S

@ forus Graph - A2 & 1 — O(4) Complete Graph - A, =0
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Consensus time

Consensus time Tynch(€): the number of iterations k needed to ensure €
consensus error:

117
x(k) — Nz <e
m From previous analysis:
1172
x(k) — < p“zll

m For a large network p =~ 1, log(p) = log(1 — (1 —p)) = —(1 —p)

log(e/lzll) __ log(llz]l/€)

T. < ~
(€)= Zog) 1-p

m What is the order of 1/(1 — p) for typical graphs?
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Consensus under various graph topologies

m The spectral gap of the graph strongly limits the consensus rate.

Network topology Consensus rate p 104
Ring O(1— n%)
) 10!
Grid O(1 — ﬁ(n))
— -2
Torus O(1—1) =10
x
[
ExpoGraph O(1 — ﬁ) S 107
= e
GeoMedian O(1 — W) 101 ¢ Gra
—4— O.-P.Exp.
Erdos-Renyi O(1) 10-11 | —A— OU-EquiDyn

-8~ OD-EquiDyn

EquiGraph O(1)

0 20 40 60 80 100 120
Iteration

Simulation results are from [Song et. al., NeurlPS 2022]

m Takeaway: Well-connected graphs (like Expander Graphs) have
large spectral gaps, enabling fast convergence.

ECE 5290/7290 & ORIE 5290

37/44



Table of Contents

Dynamic average consensus

ECE 5290/7290 & ORIE 5290 38/44



Why dynamic average consensus?

Transmit Antennas

Figure: Sensing and moving target tracking.
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Dynamic consensus protocol

m Recall the average consensus algorithm
x(k +1) = Wx(k) where x(0)=zcR"

m Average consensus tracks the global average of the static input z

m If the input is changing with iteration, can we still be able to track
the global average of the dynamic z(k)?

Dynamic average consensus protocol

For k =1,2,---, node i/ update x; as a weighted average of its neighbors:

x(k +1) = Wx(k) +z(k+1) — z(k) where x(0) = z(0)

; 40 /44
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Tracking property

m The dynamic average consensus recursion:
x(k +1) = Wx(k) +z(k+ 1) —z(k) where x(0)=z(0)

m Left-multiplying (1/N)17 to both sides of the above recursion

(v
(3

=
™=

xj(k + 1)) 1

N 1 N
xj(k)> 1+ ( > z(k+ 1)) 1- (szj(k)> 1

j=t j=t

1

==

=~
M=

1

I
~/
==

()=

—.
Il

1
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Analyze tracking errors

m Now we define

x(k):<,17§n:xj(k)>1emn and Z(k) = (

j=1

:\l—'

Z: )16R”

m With the recursion of X(k) in the last page, we have

[x(k +1) —%(k + 1)||?
=[|W(x(k) —X(k)) + A(k + 1) — A(k + 1)]?
=[|(W — 117 /n)(x(k) — X(k)) + A(k +1) — A(k +1)|]?

<pl(K) %R+ A+ DI?
where A(k) = z(k) — z(k — 1) and A(k) = z(k) — z(k — 1).
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Asymptotic behavior

m If the dynamic input oscillates in a small range, i.e., ||A(k)|| = ¢,
lim_[Jx(k) = %(k)l| = 1
im ||x(k) — X =
k—o0 1-— 1%
m Dynamic consensus converges to a small neighborhood around X(k)

If the dynamic input converges to stationary points, i.e.,
|A(k)|| — 0, it holds that

Jim[|x(k) =x(k)|| = 0

m The convergence rate is determined by both p and the rate at which
A(k) approaches 0
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Recap and fine-tuning

m What we have talked about today?

= Consensus protocols enable robust, decentralized computation,
ranging from static averaging to dynamic signal tracking.

= To ensure consensus, we require W to be doubly stochastic.

= The consensus speed largely depends on graph topology -
Well-connected graphs (e.g., complete graphs) enable rapid consensus.
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