Distributed Optimization for Machine Learning

Lecture 10 - Variance reduction and momentum for SGD

Tianyi Chen

School of Electrical and Computer Engineering Cornell Tech, Cornell University

September 29, 2025

Review: Empirical risk minimization

Let $\{\mathbf{a}_i, y_i\}_{i=1}^n$ be n random samples, and consider

$$\min_{\mathbf{x}} F(\mathbf{x}) := \frac{1}{n} \sum_{i=1}^{n} f(\mathbf{x}; \{\mathbf{a}_i, y_i\})$$
empirical risk

e.g. quadratic loss $f(\mathbf{x}; \{\mathbf{a}_i, y_i\}) = (\mathbf{a}_i^{\top} \mathbf{x} - y_i)^2$.

If one draws index $j \sim \mathsf{Unif}(1,\ldots,n)$ uniformly at random, then

$$F(\mathbf{x}) = \mathbb{E}_j[f(\mathbf{x}; \{\mathbf{a}_j, y_j\})]$$

The problem of variance in SGD

From previous lectures, we know the SGD update rule is:

$$\mathbf{x}^{t+1} = \mathbf{x}^t - \eta_t g(\mathbf{x}^t; \xi^t)$$

where $g(\mathbf{x}^t; \xi^t)$ is an unbiased estimate of $\nabla F(\mathbf{x}^t)$.

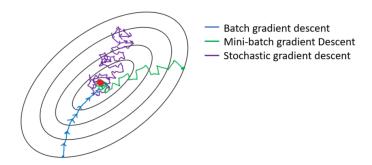
We established that this stochastic gradient has bounded variance:

$$\mathbb{E}[\|g(\mathbf{x}^t; \boldsymbol{\xi}^t)\|_2^2] \le \sigma_g^2 + c_g \|\nabla F(\mathbf{x}^t)\|_2^2$$

The term σ_g^2 (intrinsic noise) remains non-negligible even when \mathbf{x}^t is close to the optimum \mathbf{x}^* (where $\nabla F(\mathbf{x}^t) \approx \mathbf{0}$). This causes:

- Oscillations around the minimum.
- Slow convergence, requiring very small learning rates.

Recall the comparison between GD and SGD



Takeaway: Acceleration by averaging the stochastic gradients (high cost)

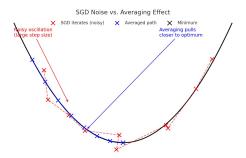
Table of Contents

Failure mode of averaged iterates

Variance reduction via momentum

Offline variance reduction algorithms

Acceleration by averaging the iterates



Iterate averaging returns

$$\bar{\mathbf{x}}^t := \frac{1}{t} \sum_{i=0}^{t-1} \mathbf{x}^i$$

with larger stepsizes $\eta_t = t^{-\alpha}$, $\alpha < 1$.

Last iterate vs. Averaged iterates in SGD

$$\min_{\mathbf{x} \in \mathbb{R}^d} \ \frac{1}{2} ||\mathbf{x}||_2^2$$

Last iterate.
$$\mathbf{x}^{t} = (1 - \eta)^{t} \mathbf{x}^{0} - \eta \sum_{k=0}^{t-1} (1 - \eta)^{t-1-k} \xi^{k}$$

$$\lim_{t\to\infty}\mathbb{E}\|\mathbf{x}^t\|^2=\frac{\eta}{2-\eta}\qquad\Rightarrow\text{ with }\eta=1,\text{ variance floor }\mathcal{O}(1).$$

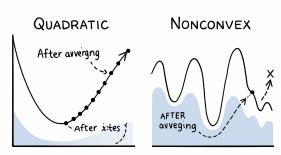
Averaged iterate.
$$\bar{\mathbf{x}}^t = \frac{1}{t} \sum_{j=0}^{t-1} \mathbf{x}^j \approx -\frac{1}{t} \sum_{k=0}^{t-1} \xi^k$$

$$\sqrt{t}\,\bar{\mathbf{x}}^t \stackrel{d}{\to} \mathcal{N}(0,\mathbf{I}) \quad \Rightarrow \quad \mathbb{E}\|\bar{\mathbf{x}}^t\|^2 \approx \frac{d}{t}.$$

Takeaway:

- Last iterate: variance $\approx \mathcal{O}(1)$ (does not vanish).
- Averaged iterate: variance $\approx \mathcal{O}(1/t)$ (vanishes).

Averaged iterates may fail



Averaging works beautifully... until it doesn't.

(Credit: Generated by ChatGPT5)

Averaging may fail for non-quadratic objectives

Consider a non-quadratic function:

$$f(x) = \frac{1}{4}x^4 \quad \Rightarrow \quad \nabla f(x) = x^3.$$

SGD with constant stepsize $\eta_t \equiv \eta$:

$$x^{t+1} = x^t - \eta((x^t)^3 + \xi^t), \text{ where } \mathbb{E}[\xi^t] = 0.$$

Observation: Unlike the quadratic case, the dynamics are *nonlinear and biased*. The stochastic term interacts with $(x^t)^3$, so averaging iterates no longer cancels the noise cleanly.

Key message: For non-quadratic f, the iterate distribution is asymmetric, so \bar{x}^t is not an unbiased estimator of the optimum.

When iterate averaging helps - and when it does not

Quadratic case $(f(x) = \frac{1}{2}x^2)$:

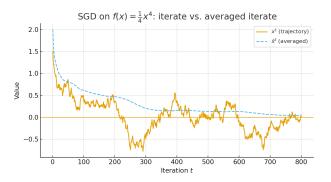
- SGD dynamics are linear: $x^{t+1} = (1 \eta)x^t \eta \xi^t$.
- Averaging cancels zero-mean noise \Rightarrow variance $\sim 1/t$.

Non-quadratic case ($f(x) = \frac{1}{4}x^4$ or nonconvex f):

- **D**ynamics are nonlinear: noise interacts multiplicatively with x^t .
- The iterates are asymmetrically distributed, leading to a biased \bar{x}^t .
- Variance may decrease, but bias dominates ⇒ **no true acceleration.**

Takeaway: Iterate averaging works beautifully for quadratics (linear dynamics), but can fail or even slow convergence for nonlinear cases.

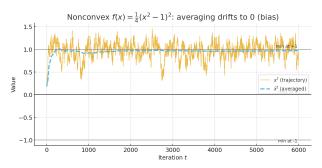
Example: $f(x) = \frac{1}{4}x^4$ with noisy gradients



(Illustration: SGD trajectories and their averages)

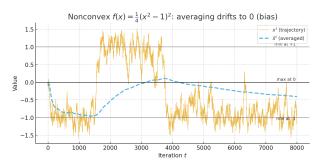
Why: For large |x|, the gradient magnitude $|x^3|$ is large, so SGD spends less time far from the origin, making the time-averaged \bar{x}^t not representative of the stationary point.

Example: Nonconvex non-quadratic with noisy gradients



(Illustration: SGD trajectories and their averages)

Example: Nonconvex non-quadratic with noisy gradients



(Illustration: SGD trajectories and their averages)

Why: This produces a trajectory that spends time in both minima, so the mean of the iterates sits near 0, even though 0 is not a minimizer - exactly the failure mode in nonconvex landscapes.

Table of Contents

Failure mode of averaged iterates

Variance reduction via momentum

Offline variance reduction algorithms

A simple idea of variance reduction

Imagine we take some \mathbf{e}^t with $\mathbb{E}[\mathbf{e}^t] = \mathbf{0}$ and set stochastic gradient as

$$\mathbf{v}^t = g(\mathbf{x}^t; \xi^t) - \mathbf{e}^t$$

— so \mathbf{v}^t is still an unbiased estimate of $\nabla F(\mathbf{x}^t)$

Question: how to reduce variability (i.e. $\mathbb{E}[\|\mathbf{v}^t\|_2^2] < \mathbb{E}[\|g(\mathbf{x}^t; \xi^t)\|_2^2]$)?

Answer: find some zero-mean \mathbf{e}^t that is positively correlated with $g(\mathbf{x}^t; \xi^t)$ (i.e. $\langle \mathbf{e}^t, g(\mathbf{x}^t; \xi^t) \rangle > 0$) (why? whiteboard)

Example: Reducing variance using control variates

Goal: Estimate $\mu = \mathbb{E}[Y]$ where $Y = X^2$ and $X \sim \text{Uniform}[0, 1]$.

■ The true mean is $\mathbb{E}[Y] = \int_0^1 x^2 dx = \frac{1}{3} \approx 0.333$.

We'll use Monte Carlo sampling with n = 5 samples:

Sample	X_i	$Y_i = X_i^2$	
1	0.1	0.01	
2	0.3	0.09	5
3	0.7	0.09 0.49 0.81	$\hat{\mu}_{naive} = \frac{1}{5} \sum_{i=1}^{3} Y_i = 0.33$
4	0.9	0.81	$\mu_{\text{maive}} = \frac{1}{5} \sum_{i=1}^{7} i_i = 0.33$
5	0.5	0.25	7—1

Observation: The estimate is close to the truth, but has high variance.

Question: Can we reduce variance without introducing bias?

Example: Reducing variance using control variates

We introduce a correlated variable $Z_i = X_i$ with $\mathbb{E}[Z_i] = 0.5$.

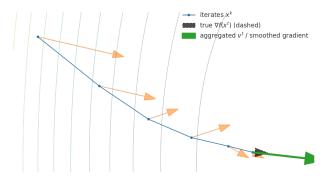
$$\hat{\mu}_{\mathsf{cv}} = rac{1}{5} \sum_{i=1}^{5} \left(Y_i - c(Z_i - \mathbb{E}[Z])
ight)$$

Sample	X_i	$Y_i = X_i^2$	$Z_i = X_i$	$Y_i - c(Z_i - \mathbb{E}[Z])$
1	0.1	0.01	0.1	0.01 - 0.6(0.1 - 0.5) = 0.25
2	0.3	0.09	0.3	0.09 - 0.6(0.3 - 0.5) = 0.21
3	0.7	0.49	0.7	0.49 - 0.6(0.7 - 0.5) = 0.37
4	0.9	0.81	0.9	0.81 - 0.6(0.9 - 0.5) = 0.57
5	0.5	0.25	0.5	0.25 - 0.6(0.5 - 0.5) = 0.25
	•	$\hat{\mu}_{cv} = \frac{1}{5}$	$\sum_{i=1}^{5} (\cdot)$	0.33

Table: Control variate estimator with c = 0.6 and $\mathbb{E}[Z] = 0.5$.

the mean remains unchanged - the estimator is **unbiased**.

Reducing variance via gradient aggregation



Main idea: If the current iterate is not too far away from previous iterates, then historical gradients might be useful in producing e^t

Recall the heavy-ball method

Recall the Heavy-ball method as

$$\mathbf{x}^{t+1} = \mathbf{x}^t - \eta_t \nabla F(\mathbf{x}^t) + \theta_t (\mathbf{x}^t - \mathbf{x}^{t-1})$$

Here, $\theta_t(\mathbf{x}^t - \mathbf{x}^{t-1})$ is the momentum term, proportional to the step.

Imagine a heavy ball rolling down a hilly landscape.

- The gradient $(\nabla F(\mathbf{x}^t))$ acts like gravity, pulling it downhill.
- The momentum term $(\theta_t(\mathbf{x}^t \mathbf{x}^{t-1}))$ acts like inertia, helping the ball continue in its previous direction, smoothing out sharp turns and accelerating through flat regions.

From Heavy-ball to Momentum SGD: equivalent views

Heavy-ball update can be rewritten by introducing a **velocity variable**:

$$\mathbf{v}^{t+1} := \mathbf{x}^{t+1} - \mathbf{x}^t \iff \mathbf{v}^{t+1} = \theta_t \mathbf{v}^t - \eta_t \nabla F(\mathbf{x}^t)$$

- The "momentum" \mathbf{v}^{t+1} stores information from past updates.
- **Each** new gradient $\nabla F(\mathbf{x}^t)$ modifies this moving direction.

When we move to the stochastic setting, we use the stochastic gradient $g(\mathbf{x}^t; \xi^t)$ and maintain an exponentially weighted moving average:

$$\mathbf{v}^{t+1} = \theta \mathbf{v}^t + (1 - \theta) g(\mathbf{x}^t; \xi^t)$$

By recursively substituting \mathbf{v}^t , we can see that \mathbf{v}^{t+1} is a weighted average of all past stochastic gradients (assuming $\mathbf{v}^{-1} = \mathbf{0}$ for simplicity):

$$\mathbf{v}^{t+1} = (1 - \theta)g(\mathbf{x}^{t}; \xi^{t}) + \theta(1 - \theta)g(\mathbf{x}^{t-1}; \xi^{t-1}) + \theta^{2}(1 - \theta)g(\mathbf{x}^{t-2}; \xi^{t-2}) + \dots + \theta^{t}(1 - \theta)g(\mathbf{x}^{0}; \xi^{0}) + \theta^{t+1}\mathbf{v}^{-1}$$

Momentum SGD as a weighted average of past gradients

Main idea: If the current iterate is not too far away from previous iterates, then historical gradients might be useful in producing \mathbf{v}^t

The update for \mathbf{x}^{t+1} can be rewritten as:

$$\mathbf{v}^{t+1} = \theta \mathbf{v}^t + (1 - \theta) g(\mathbf{x}^t; \xi^t)$$

 $\mathbf{x}^{t+1} = \mathbf{x}^t - \eta_t \mathbf{v}^{t+1}$

where $\theta \in [0,1)$ is the momentum coefficient.

The momentum term $\theta \mathbf{v}^t$ acts as a "control variate" that effectively subtracts out some of the noise in the current stochastic gradient $g(\mathbf{x}^t; \xi^t)$, guiding the update in a more stable direction.

Momentum SGD is thus the stochastic version of Heavy-ball.

Momentum term's unbiasedness

Taking the expectation conditional on \mathbf{x}^t :

$$\mathbb{E}[\mathbf{v}^{t+1}|\mathbf{x}^t] = \theta \mathbb{E}[\mathbf{v}^t|\mathbf{x}^t] + (1-\theta)\mathbb{E}[g(\mathbf{x}^t;\xi^t)|\mathbf{x}^t].$$

If we start with $\mathbf{v}^0 = \nabla F(\mathbf{x}^0)$ (or $\mathbf{0}$ and warm up), and if we consider \mathbf{x}^t to be fixed, then $\mathbb{E}[g(\mathbf{x}^t; \boldsymbol{\xi}^t) | \mathbf{x}^t] = \nabla F(\mathbf{x}^t)$; that is

$$\mathbb{E}[\mathbf{v}^{t+1}|\mathbf{x}^t] = \theta \mathbb{E}[\mathbf{v}^t|\mathbf{x}^t] + (1-\theta)\nabla F(\mathbf{x}^t)$$

In a stationary setting (x constant), v would converge to $\nabla F(x)$.

In the context of variance reduction, we treat the momentum update direction \mathbf{v}^{t+1} itself as our new gradient estimate. $\mathbb{E}[\mathbf{v}^{t+1}] \approx \nabla F(\mathbf{x}^t)$ (This is an approximation due to changing \mathbf{x}^t , but holds for small η).

Noise reduction

Consider the noise component $\epsilon^t = g(\mathbf{x}^t; \xi^t) - \nabla F(\mathbf{x}^t)$, where $\mathbb{E}[\epsilon^t] = \mathbf{0}$ and $\mathbb{E}[\|\epsilon^t\|_2^2] \leq \sigma_g^2 + (c_g - 1)\|\nabla F(\mathbf{x}^t)\|_2^2$. The momentum becomes:

$$\mathbf{v}^{t+1} pprox heta \mathbf{v}^t + (1- heta)(
abla F(\mathbf{x}^t) + \epsilon^t)$$

which is a moving average of the gradients and the noise components.

Because $\mathbb{E}[\epsilon^t] = \mathbf{0}$, averaging several ϵ^t terms together (which is what \mathbf{v}^{t+1} does over time) tends to reduce the overall magnitude of the noise.

$$\mathbb{E}\left[\left\|\sum_{j=0}^t heta^j (1- heta)\epsilon^{t-j}
ight\|_2^2
ight] \propto rac{(1- heta)^2}{1- heta^2}\sigma_g^2 pprox rac{1- heta}{1+ heta}\sigma_g^2$$

Vanilla SGD vs. SGD with momentum

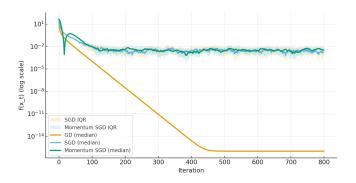
Vanilla SGD (B=1):

- $\mathbf{g}(\mathbf{x}^t; \xi^t) = \nabla f_{i_t}(\mathbf{x}^t)$ (single sample)
- $\blacksquare \mathbb{E}[\|g(\mathbf{x}^t; \xi^t)\|_2^2] \le \sigma_g^2 + c_g \|\nabla F(\mathbf{x}^t)\|_2^2$
- Prone to high variance in update, especially when $\nabla F(\mathbf{x}^t)$ is small.

SGD with Momentum

- $\mathbf{v}^{t+1} = \theta \mathbf{v}^t + (1-\theta)g(\mathbf{x}^t; \xi^t)$
- The effective variance σ_{mom}^2 of \mathbf{v}^{t+1} is much smaller than σ_g^2 .
- $\mathbb{E}[\|\mathbf{v}^{t+1}\|_2^2] pprox rac{(1- heta)^2}{1- heta^2} \sigma_g^2 + \dots$ (simplified)
- Result: Faster, more stable convergence, especially in the tail phase when approaching the minimum.

Comparison between GD, SGD and momentum SGD



Takeaway: momentum SGD does not fundamentally eliminate variance.

Table of Contents

Failure mode of averaged iterates

Variance reduction via momentum

Offline variance reduction algorithms

Momentum helps... but only to a certain extent

Momentum smooths the gradient noise by averaging recent updates:

$$\mathbf{v}^{t+1} = \theta \mathbf{v}^t + (1 - \theta) g(\mathbf{x}^t; \xi^t).$$

- It reduces the short-term fluctuations of stochastic gradients.
- But it does **not eliminate the bias** from using noisy samples the expected gradient still fluctuates around $\nabla F(\mathbf{x}^t)$.
- Moreover, once the iterates move far from previous ones, the accumulated information in v^t becomes stale.

Momentum helps... but only to a certain extent

Variance reduction via momentum is implicit and local.

Question: Can we achieve *explicit* variance reduction - not just smooth the noise, but actually construct a lower-variance gradient estimator?

Variance reduction for finite-sum minimization

Idea: Instead of smoothing gradients implicitly, can we **correct** noisy stochastic gradients using information from the full dataset?

In our discussion so far, we focus on the following stochastic problem

$$F(\mathbf{x}) = \mathbb{E}_{\xi}[f(\mathbf{x}; \xi)]$$

which we call it as the "online" problem hereafter.

But we in fact first collect *n* offline training samples in $\{\xi_i\}_{i=1}^n$, and solve

$$\min_{\mathbf{x}} \ \underline{F(\mathbf{x}) := \frac{1}{n} \sum_{i=1}^{n} f(\mathbf{x}; \xi_i)}_{\text{empirical risk}}$$

which we call it as the "offline" problem hereafter.

SVRG's variance-reduced gradient estimator

Key difference: SVRG replaces noisy gradients with a corrected version that re-centers them around the full gradient at a *snapshot point*.

- Periodically calculate the **full gradient** at a "snapshot" point $\tilde{\mathbf{x}}$.
- Use this full gradient as a "low-variance anchor" to correct

$$\mathbf{v}_{\mathsf{SVRG}}^t =
abla f_{i_t}(\mathbf{x}^t) -
abla f_{i_t}(\mathbf{ ilde{x}}) +
abla F(\mathbf{ ilde{x}})$$

- f_{i_t} : gradient for the current random sample i_t .
- \mathbf{x} : snapshot point (updated every epoch).
- $\nabla F(\tilde{\mathbf{x}})$: full gradient at $\tilde{\mathbf{x}}$.

The SVRG algorithm

for epoch $s = 1, 2, \dots$

Compute the full gradient at the snapshot:

$$\nabla F(\tilde{\mathbf{x}}) = \frac{1}{n} \sum_{i=1}^{n} \nabla f_i(\tilde{\mathbf{x}})$$
 set snapshot $\tilde{\mathbf{x}}$ from the last epoch

- **for** inner iteration t = 1, ..., m
 - Choose a sample i_t uniformly at random and compute

$$\mathbf{v}_{\mathsf{SVRG}}^t =
abla f_{i_t}(\mathbf{x}^t) -
abla f_{i_t}(\mathbf{ ilde{x}}) +
abla F(\mathbf{ ilde{x}})$$

• Run the gradient descent update: $\mathbf{x}^{t+1} = \mathbf{x}^t - \eta \mathbf{v}_{\mathsf{SVRG}}^t$ end for

. .

- end for
 - Full gradient calculation is expensive but only done once per epoch.
 - Inside the epoch, computations are two stochastic gradients.

SVRG: How it reduces variance

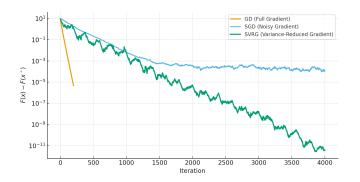
Let's look at the "noise" of the SVRG gradient:

$$\mathbf{v}_{\mathsf{SVRG}}^t - \nabla F(\mathbf{x}^t) = (\nabla f_{i_t}(\mathbf{x}^t) - \nabla F(\mathbf{x}^t)) - (\nabla f_{i_t}(\tilde{\mathbf{x}}) - \nabla F(\tilde{\mathbf{x}}))$$

- Unbiased: Yes, $\mathbb{E}[\mathbf{v}_{SVRG}^t] = \nabla F(\mathbf{x}^t)$.
- Key: Both $\nabla f_{i_t}(\mathbf{x}^t)$ and $\nabla f_{i_t}(\tilde{\mathbf{x}})$ use the same random sample i_t .
 - This makes them highly correlated.
 - The "common noise" associated with sample i_t tends to cancel out in the difference term $\nabla f_{i_t}(\mathbf{x}^t) \nabla f_{i_t}(\tilde{\mathbf{x}})$.
- **Variance bound:** The variance of $\mathbf{v}_{\mathsf{SVRG}}^t$ is bounded by:

$$\mathsf{Var}(\mathbf{v}_{\mathsf{SVRG}}^t) \leq L^2 \|\mathbf{x}^t - \tilde{\mathbf{x}}\|_2^2$$

Comparison between GD, SGD and SVRG



Takeaway: Acceleration by explicit variance reduction

The SVRG's advantages and online challenge

- SVRG's merits: Leverages the finite-sum structure to introduce explicit variance reduction:
 - Able to use constant stepsize as GD.
 - Able to converge as the same convergence rate as GD.
 - Average per-iteration cost of SVRG is comparable to that of SGD
- **SVRG's limitation:** Relies on periodic *full gradient computations*, which can be expensive or impossible in:
 - Online learning (data arrives as a stream).
 - Extremely large datasets where a full pass is too slow.

Recap and fine-tuning

- What we have talked about today?
 - ⇒ How to reduce variance by averaging iterates?
 - ⇒ How to reduce variance by momentum?
 - ⇒ How to reduce variance by using the finite-sum structure?

Welcome anonymous survey!

