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Review: Empirical risk minimization

Let {aj;, y;}7; be n random samples, and consider

m|n F(x Z fx;{ai, yi})

empirical risk
e.g. quadratic loss f{x; {a;, yi}) = (a x — y;)%.
If one draws index j ~ Unif(1,..., n) uniformly at random, then

F(x) = Ej[f(x; {aj, y;})]
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The problem of variance in SGD

From previous lectures, we know the SGD update rule is:

xt+1 — Xt _ 77tg(xt; gt)

where g(xF; &%) is an unbiased estimate of VF(x?).
We established that this stochastic gradient has bounded variance:
Elllg(x": €3] < o + cl V(x5

The term aé (intrinsic noise) remains non-negligible even when x* is close
to the optimum x* (where VF(x') ~ 0). This causes:

m Oscillations around the minimum.

m Slow convergence, requiring very small learning rates.
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Recall the comparison between GD and SGD

— Batch gradient descent
— Mini-batch gradient Descent
— Stochastic gradient descent

Takeaway: Acceleration by averaging the stochastic gradients (high cost)
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Acceleration by averaging the iterates

SGD Noise vs. Averaging Effect

X SGDiterates (noisy) X Averagedpath X Minimum
isy oscillation Averaging pulls
(IAge step size) closer to optimum

Iterate averaging returns
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Last iterate vs. Averaged iterates in SGD
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Vit S NO,1) = BRI~ <.
Takeaway:
m Last iterate: variance = O(1) (does not vanish).
m Averaged iterate: variance =~ O(1/t) (vanishes).
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Averaged iterates may fail

QUADRATIC NONCONVEX

After avvergng
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Averaging works beautifully...
until it doesn’t.

(Credit: Generated by ChatGPT5)

ECE 5290/7290 & ORIE 5290 8/35



Averaging may fail for non-quadratic objectives

Consider a non-quadratic function:

fx)=1ix* = VAx)=x.

SGD with constant stepsize 7, = 7:
X =xt—n((x)° +¢'), where E[¢] = 0.

Observation: Unlike the quadratic case, the dynamics are nonlinear and
biased. The stochastic term interacts with (xf)3, so averaging iterates no
longer cancels the noise cleanly.

Key message: For non-quadratic f, the iterate distribution is
asymmetric, so X' is not an unbiased estimator of the optimum.
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When iterate averaging helps - and when it does not

. 1 .
Quadratic case (f{x) = 3x°):
m SGD dynamics are linear: x**1 = (1 — n)x* — n¢t.
m Averaging cancels zero-mean noise = variance ~ 1/t.

Non-quadratic case (f{x) = 3x* or nonconvex f):

m Dynamics are nonlinear: noise interacts multiplicatively with xt.
m The iterates are asymmetrically distributed, leading to a biased ‘.

m Variance may decrease, but bias dominates = no true acceleration.

Takeaway: lterate averaging works beautifully for quadratics (linear
dynamics), but can fail or even slow convergence for nonlinear cases.
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Example: f{x) = 1x* with noisy gradients

SGD on fix) = %x": iterate vs. averaged iterate

201 xt (trajectory)
%! (averaged)
151
1.0r
[
2
S o5f
0.0 A
—05}
0 100 200 300 400 500 600 700 800
Iteration t

(Illustration: SGD trajectories and their averages)

Why: For large |x|, the gradient magnitude |x3| is large, so SGD spends
less time far from the origin, making the time-averaged X' not
_representative of the stationary point.
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Example:

Nonconvex non-quadratic with noisy gradients

Value

15

Nonconvex f(x) = (x? — 1): averaging drifts to 0 (bias)

min at +1

1.0

0.5

0.0

-0.5

S

x* (trajectory)
— = X' (averaged)
0 1000 2000 3000 4000 5000 6000
Iteration t
(Illustration: SGD trajectories and their averages)

ECE 5290/7290 & ORIE 5290 12/35



Example: Nonconvex non-quadratic with noisy gradients

Nonconvex f(x) =%(x2 —1)?: averaging drifts to 0 (bias)

15 Xt (trajectory)
"

eraged)

max at 0

Value

-1.0 A

0 1000 2000 3000 4000 5000 6000 7000 8000
Iteration t

(llustration: SGD trajectories and their averages)
Why: This produces a trajectory that spends time in both minima, so

the mean of the iterates sits near 0, even though 0 is not a minimizer -
exactly the failure mode in nonconvex landscapes.
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A simple idea of variance reduction

Imagine we take some e with E[e’] = 0 and set stochastic gradient as

— so v is still an unbiased estimate of V F(x")

Question: how to reduce variability (i.e. E[||v¢[|3] < E[||g(x%;£9)]|3])?

Answer: find some zero-mean ef that is positively correlated with
g(xh &Y (i.e. (e, g(x% &) > 0) (why? whiteboard)

)
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Example: Reducing variance using control variates

Goal: Estimate 1 = E[Y] where Y= X? and X ~ Uniform|[0, 1].
m The true mean is E[Y] = folxzdx: 1~0.333.
We'll use Monte Carlo sampling with n =5 samples:

Sample | X; Y, =X?
1 0.1 0.01

2 03  0.09

3 07 049 - Y, =033
4 09 081 Finaive Z

5 05 025

Observation: The estimate is close to the truth, but has high variance.
Question: Can we reduce variance without introducing bias?
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Example: Reducing variance using control variates

We introduce a correlated variable Z; = X; with E[Z]] = 0.5.

o= g 3 (i~ Z - E[2)

i=1

Sample X,' \/,:)e Z;:X; \/,'— C(Z,—]E[Z])
1 |01 o001 0.1 | 001-06(0.1-05)=025
2 0.3 0.09 0.3 0.09 - 0.6(0.3-0.5) =0.21
3 0.7 0.49 0.7 0.49 - 0.6(0.7 - 0.5) = 0.37
4 0.9 0.81 0.9 0.81-0.6(0.9 - 0.5) = 0.57
5 |05 025 05 | 0.25-0.6(0.5-05) =025
flew = 2304 () 0.33

Table: Control variate estimator with ¢ = 0.6 and E[Z] = 0.5.

e mean remains unchanged - the estimator is unbiased.
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Reducing variance via gradient aggregation

—e— iterates x*
8888 true Vfix') (dashed)
Bl agoregated vf/ smoothed gradient

Main idea: If the current iterate is not too far away from previous
iterates, then historical gradients might be useful in producing ef
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Recall the heavy-ball method

Recall the Heavy-ball method as
X" = xt — n, VF(x") + 0(x* — x" 1)

Here, 0,(x! — x'~1) is the momentum term, proportional to the step.

Imagine a heavy ball rolling down a hilly landscape.
m The gradient (VF(x")) acts like gravity, pulling it downhill.

m The momentum term (0:(x! — xt~1)) acts like inertia, helping the
ball continue in its previous direction, smoothing out sharp turns and
accelerating through flat regions.
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From Heavy-ball to Momentum SGD: equivalent views

Heavy-ball update can be rewritten by introducing a velocity variable:

o xt = v =gt - VF(x)

m The “momentum” v*! stores information from past updates.
m Each new gradient VF(x") modifies this moving direction.

When we move to the stochastic setting, we use the stochastic gradient
g(x%; &) and maintain an exponentially weighted moving average:

vt = vt + (1 — 0)g(xh; €Y)

By recursively substituting v¢, we can see that vi*! is a weighted average
of all past stochastic gradients (assuming v = 0 for simplicity):

VI = (1 - 0)g(x €1) + 0(1 - 0)g(xT€T) + 07(1 - 0)g(x" % ¢"?)
+01(1— 0)g(x% &%) + 0 v
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Momentum SGD as a weighted average of past gradients

Main idea: If the current iterate is not too far away from previous
iterates, then historical gradients might be useful in producing v*

The update for x'™! can be rewritten as:

vt = gt + (1 — 0)g(xh; €Y)

Xl =yt 77tvt+1

where 6 € [0,1) is the momentum coefficient.

The momentum term Ov! acts as a “control variate” that effectively
subtracts out some of the noise in the current stochastic gradient
g(x%; &), guiding the update in a more stable direction.

Momentum SGD is thus the stochastic version of Heavy-ball.

&)
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Momentum term’s unbiasedness

Taking the expectation conditional on x!:

IE[vt“\xt] _ QE[Vt|Xt] + (]_ — Q)E[g(xf; ff)|xt].

If we start with v0 = VF(x°) (or 0 and warm up), and if we consider x*

to be fixed, then E[g(x"; £%)|x"] = VF(x"); that is
E[v™ |x"] = OE[v[x] + (1 — 0)V F(x")

In a stationary setting (x constant), v would converge to V F(x).

In the context of variance reduction, we treat the momentum update
direction vt*! itself as our new gradient estimate. E[vi!] ~ V F(x!)
(This is an approximation due to changing x*, but holds for small 7).

ECE 5290/7290 & ORIE 5290 22 /35



Noise reduction

Consider the noise component €' = g(x*; &) — VF(x'), where E[¢/] =0
and E[||€"[|3] < 07 + (cg — 1)[[VFA(x")[|3. The momentum becomes:

vt vt (1 — 0)(VF(x) + €Y)
which is a moving average of the gradients and the noise components.

Because E[e’] = 0, averaging several €' terms together (which is what

vi*1 does over time) tends to reduce the overall magnitude of the noise.

2

¢

el | e, 10,

E Zﬂf(l—e)etf o 102 O'g~1+00'g
Jj=0 5
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Vanilla SGD vs. SGD with momentum

Vanilla SGD (B = 1):
m g(x% &Y = V£, (x?) (single sample)
= Efllg(x5 €] < 0 + ¢l VA3

m Prone to high variance in update, especially when V F(x") is small.

SGD with Momentum

m il = Gvt + (1 — 0)g(xt; €Y

m The effective variance 02, of vi*! is much smaller than o2.

g
m E[[viH3] =~ %02 +... (simplified)

m Result: Faster, more stable convergence, especially in the tail phase
when approaching the minimum.
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Comparison between GD, SGD and momentum SGD

10t
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SGD IQR
Momentum SGD IQR
10-14} = GD (median)
—— SGD (median)
= Momentum SGD (median)
0 100 200 300 400 500 600 700 800

Iteration

Takeaway: momentum SGD does not fundamentally eliminate variance.
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Momentum helps... but only to a certain extent

Momentum smooths the gradient noise by averaging recent updates:

vt = gvt + (1 — 0)g(x"; €Y).

m It reduces the short-term fluctuations of stochastic gradients.

m But it does not eliminate the bias from using noisy samples - the
expected gradient still fluctuates around V F(x?).

m Moreover, once the iterates move far from previous ones, the
accumulated information in vi becomes stale.

ECE 5290/7290 & ORIE 5290

27/35



Momentum helps... but only to a certain extent

Variance reduction via momentum is implicit and local.

Question: Can we achieve explicit variance reduction - not just smooth
the noise, but actually construct a lower-variance gradient estimator?

)
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Variance reduction for finite-sum minimization
Idea: Instead of smoothing gradients implicitly, can we correct noisy
stochastic gradients using information from the full dataset?
In our discussion so far, we focus on the following stochastic problem
F(x) = E¢[f(x; §)]
which we call it as the “online” problem hereafter.

But we in fact first collect n offline training samples in {£;}7_;, and solve

m|n F(x Zf(x§

empirical risk

_which we call it as the “offline” problem hereafter.

29/35
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SVRG's variance-reduced gradient estimator

Key difference: SVRG replaces noisy gradients with a corrected version
that re-centers them around the full gradient at a snapshot point.

m Periodically calculate the full gradient at a "snapshot” point X.

m Use this full gradient as a "low-variance anchor” to correct

Vsyre = Vi (xF) — VA (X) + VF(X)

f,: gradient for the current random sample iy.
X: snapshot point (updated every epoch).
VF(X): full gradient at %.
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The SVRG algorithm

for epoch s=1,2,...
m Compute the full gradient at the snapshot:

1 n
VFX) = . Z V£(X) set snapshot X from the last epoch
i=1

m for inner iteration t=1,..., m

Choose a sample i; uniformly at random and compute
vsvre = Vfi(x') = V£, (X) + VF(X)

Run the gradient descent update: x*™ = x* — nviyre
end for
end for

m Full gradient calculation is expensive but only done once per epoch.

- Inside the epoch, computations are two stochastic gradients.
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SVRG: How it reduces variance

Let's look at the "noise” of the SVRG gradient:
vsvre — VFA(X') = (V£ (x) = VAx')) — (V£ (%) — VF(&))

m Unbiased: Yes, E[v,rc] = VF(xF).
m Key: Both Vf,(xf) and V7, (X) use the same random sample i;.

This makes them highly correlated.
The "common noise” associated with sample i; tends to cancel out
in the difference term V£, (x') — V£,(X).

m Variance bound: The variance of v{, g is bounded by:

Var(viyre) < L2[|x" — %13
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Comparison between GD, SGD and SVRG

10t —— GD (Full Gradient)
~—— SGD (Noisy Gradient)
= SVRG (Variance-Reduced Gradient)

0 500 1000 1500 2000 2500 3000 3500 4000
Iteration

Takeaway: Acceleration by explicit variance reduction
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The SVRG's advantages and online challenge

m SVRG’s merits: Leverages the finite-sum structure to introduce
explicit variance reduction:
Able to use constant stepsize as GD.
Able to converge as the same convergence rate as GD.
Average per-iteration cost of SVRG is comparable to that of SGD

m SVRG’s limitation: Relies on periodic full gradient computations,
which can be expensive or impossible in:

Online learning (data arrives as a stream).
Extremely large datasets where a full pass is too slow.
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Recap and fine-tuning

m What we have talked about today?
= How to reduce variance by averaging iterates?
= How to reduce variance by momentum?
= How to reduce variance by using the finite-sum structure?
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