
Distributed Optimization for Machine Learning
Lecture 10 - Variance reduction and momentum for SGD

Tianyi Chen

School of Electrical and Computer Engineering
Cornell Tech, Cornell University

September 29, 2025

ECE 5290/7290 & ORIE 5290 2 / 35

Review: Empirical risk minimization

Let {ai, yi}n
i=1 be n random samples, and consider

min
x

F(x) := 1
n

n∑
i=1

f(x; {ai, yi})︸ ︷︷ ︸
empirical risk

e.g. quadratic loss f(x; {ai, yi}) = (a⊤
i x − yi)2.

If one draws index j ∼ Unif(1, . . . , n) uniformly at random, then

F(x) = Ej[f(x; {aj, yj})]

ECE 5290/7290 & ORIE 5290 3 / 35

The problem of variance in SGD

From previous lectures, we know the SGD update rule is:

xt+1 = xt − ηtg(xt; ξt)

where g(xt; ξt) is an unbiased estimate of ∇F(xt).

We established that this stochastic gradient has bounded variance:

E[∥g(xt; ξt)∥2
2] ≤ σ2

g + cg∥∇F(xt)∥2
2

The term σ2
g (intrinsic noise) remains non-negligible even when xt is close

to the optimum x∗ (where ∇F(xt) ≈ 0). This causes:
Oscillations around the minimum.
Slow convergence, requiring very small learning rates.

ECE 5290/7290 & ORIE 5290 4 / 35

Recall the comparison between GD and SGD

Takeaway: Acceleration by averaging the stochastic gradients (high cost)

ECE 5290/7290 & ORIE 5290 5 / 35

Table of Contents

Failure mode of averaged iterates

Variance reduction via momentum

Offline variance reduction algorithms

ECE 5290/7290 & ORIE 5290 6 / 35

Acceleration by averaging the iterates

Iterate averaging returns

x̄t :=
1
t

t−1∑
i=0

xi

with larger stepsizes ηt = t−α, α < 1.

ECE 5290/7290 & ORIE 5290 7 / 35

Last iterate vs. Averaged iterates in SGD

min
x∈Rd

1
2 ||x||

2
2

Last iterate. xt = (1 − η)tx0 − η
∑t−1

k=0(1 − η)t−1−kξk

lim
t→∞

E∥xt∥2 =
η

2 − η
⇒ with η = 1, variance floor O(1).

Averaged iterate. x̄t = 1
t
∑t−1

j=0 xj ≈ − 1
t
∑t−1

k=0 ξ
k

√
t x̄t d−→ N (0, I) ⇒ E∥x̄t∥2 ≈ d

t .

Takeaway:
Last iterate: variance ≈ O(1) (does not vanish).
Averaged iterate: variance ≈ O(1/t) (vanishes).

ECE 5290/7290 & ORIE 5290 8 / 35

Averaged iterates may fail

(Credit: Generated by ChatGPT5)

ECE 5290/7290 & ORIE 5290 9 / 35

Averaging may fail for non-quadratic objectives

Consider a non-quadratic function:

f(x) = 1
4 x4 ⇒ ∇f(x) = x3.

SGD with constant stepsize ηt ≡ η:

xt+1 = xt − η
(
(xt)3 + ξt), where E[ξt] = 0.

Observation: Unlike the quadratic case, the dynamics are nonlinear and
biased. The stochastic term interacts with (xt)3, so averaging iterates no
longer cancels the noise cleanly.

Key message: For non-quadratic f, the iterate distribution is
asymmetric, so x̄t is not an unbiased estimator of the optimum.

ECE 5290/7290 & ORIE 5290 10 / 35

When iterate averaging helps - and when it does not

Quadratic case (f(x) = 1
2 x2):

SGD dynamics are linear: xt+1 = (1 − η)xt − ηξt.
Averaging cancels zero-mean noise ⇒ variance ∼ 1/t.

Non-quadratic case (f(x) = 1
4 x4 or nonconvex f):

Dynamics are nonlinear: noise interacts multiplicatively with xt.
The iterates are asymmetrically distributed, leading to a biased x̄t.
Variance may decrease, but bias dominates ⇒ no true acceleration.

Takeaway: Iterate averaging works beautifully for quadratics (linear
dynamics), but can fail or even slow convergence for nonlinear cases.

ECE 5290/7290 & ORIE 5290 11 / 35

Example: f(x) = 1
4x4 with noisy gradients

(Illustration: SGD trajectories and their averages)

Why: For large |x|, the gradient magnitude |x3| is large, so SGD spends
less time far from the origin, making the time-averaged x̄t not
representative of the stationary point.

ECE 5290/7290 & ORIE 5290 12 / 35

Example: Nonconvex non-quadratic with noisy gradients

(Illustration: SGD trajectories and their averages)

ECE 5290/7290 & ORIE 5290 13 / 35

Example: Nonconvex non-quadratic with noisy gradients

(Illustration: SGD trajectories and their averages)

Why: This produces a trajectory that spends time in both minima, so
the mean of the iterates sits near 0, even though 0 is not a minimizer -
exactly the failure mode in nonconvex landscapes.

ECE 5290/7290 & ORIE 5290 14 / 35

Table of Contents

Failure mode of averaged iterates

Variance reduction via momentum

Offline variance reduction algorithms

ECE 5290/7290 & ORIE 5290 15 / 35

A simple idea of variance reduction

Imagine we take some et with E[et] = 0 and set stochastic gradient as

vt = g(xt; ξt)− et

— so vt is still an unbiased estimate of ∇F(xt)

Question: how to reduce variability (i.e. E[∥vt∥2
2] < E[∥g(xt; ξt)∥2

2])?

Answer: find some zero-mean et that is positively correlated with
g(xt; ξt) (i.e. ⟨et, g(xt; ξt)⟩ > 0) (why? whiteboard)

ECE 5290/7290 & ORIE 5290 16 / 35

Example: Reducing variance using control variates

Goal: Estimate µ = E[Y] where Y = X2 and X ∼ Uniform[0, 1].
The true mean is E[Y] =

∫ 1
0 x2dx = 1

3 ≈ 0.333.

We’ll use Monte Carlo sampling with n = 5 samples:
Sample Xi Yi = X2

i
1 0.1 0.01
2 0.3 0.09
3 0.7 0.49
4 0.9 0.81
5 0.5 0.25

µ̂naive =
1
5

5∑
i=1

Yi = 0.33

Observation: The estimate is close to the truth, but has high variance.

Question: Can we reduce variance without introducing bias?

ECE 5290/7290 & ORIE 5290 17 / 35

Example: Reducing variance using control variates

We introduce a correlated variable Zi = Xi with E[Zi] = 0.5.

µ̂cv =
1
5

5∑
i=1

(
Yi − c(Zi − E[Z])

)

Sample Xi Yi = X2
i Zi = Xi Yi − c(Zi − E[Z])

1 0.1 0.01 0.1 0.01 - 0.6(0.1 - 0.5) = 0.25
2 0.3 0.09 0.3 0.09 - 0.6(0.3 - 0.5) = 0.21
3 0.7 0.49 0.7 0.49 - 0.6(0.7 - 0.5) = 0.37
4 0.9 0.81 0.9 0.81 - 0.6(0.9 - 0.5) = 0.57
5 0.5 0.25 0.5 0.25 - 0.6(0.5 - 0.5) = 0.25

µ̂cv =
1
5
∑5

i=1(·) 0.33

Table: Control variate estimator with c = 0.6 and E[Z] = 0.5.

The mean remains unchanged - the estimator is unbiased.

ECE 5290/7290 & ORIE 5290 18 / 35

Reducing variance via gradient aggregation

Main idea: If the current iterate is not too far away from previous
iterates, then historical gradients might be useful in producing et

ECE 5290/7290 & ORIE 5290 19 / 35

Recall the heavy-ball method

Recall the Heavy-ball method as

xt+1 = xt − ηt∇F(xt) + θt(xt − xt−1)

Here, θt(xt − xt−1) is the momentum term, proportional to the step.

Imagine a heavy ball rolling down a hilly landscape.

The gradient (∇F(xt)) acts like gravity, pulling it downhill.

The momentum term (θt(xt − xt−1)) acts like inertia, helping the
ball continue in its previous direction, smoothing out sharp turns and
accelerating through flat regions.

ECE 5290/7290 & ORIE 5290 20 / 35

From Heavy-ball to Momentum SGD: equivalent views

Heavy-ball update can be rewritten by introducing a velocity variable:

vt+1 := xt+1 − xt ⇐⇒ vt+1 = θtvt − ηt∇F(xt)

The “momentum” vt+1 stores information from past updates.
Each new gradient ∇F(xt) modifies this moving direction.

When we move to the stochastic setting, we use the stochastic gradient
g(xt; ξt) and maintain an exponentially weighted moving average:

vt+1 = θvt + (1 − θ)g(xt; ξt)

By recursively substituting vt, we can see that vt+1 is a weighted average
of all past stochastic gradients (assuming v−1 = 0 for simplicity):

vt+1 =(1 − θ)g(xt; ξt) + θ(1 − θ)g(xt−1; ξt−1) + θ2(1 − θ)g(xt−2; ξt−2)

+ · · ·+ θt(1 − θ)g(x0; ξ0) + θt+1v−1

ECE 5290/7290 & ORIE 5290 21 / 35

Momentum SGD as a weighted average of past gradients

Main idea: If the current iterate is not too far away from previous
iterates, then historical gradients might be useful in producing vt

The update for xt+1 can be rewritten as:

vt+1 = θvt + (1 − θ)g(xt; ξt)

xt+1 = xt − ηtvt+1

where θ ∈ [0, 1) is the momentum coefficient.
The momentum term θvt acts as a “control variate” that effectively
subtracts out some of the noise in the current stochastic gradient
g(xt; ξt), guiding the update in a more stable direction.

Momentum SGD is thus the stochastic version of Heavy-ball.

ECE 5290/7290 & ORIE 5290 22 / 35

Momentum term’s unbiasedness

Taking the expectation conditional on xt:

E[vt+1|xt] = θE[vt|xt] + (1 − θ)E[g(xt; ξt)|xt].

If we start with v0 = ∇F(x0) (or 0 and warm up), and if we consider xt

to be fixed, then E[g(xt; ξt)|xt] = ∇F(xt); that is

E[vt+1|xt] = θE[vt|xt] + (1 − θ)∇F(xt)

In a stationary setting (x constant), v would converge to ∇F(x).

In the context of variance reduction, we treat the momentum update
direction vt+1 itself as our new gradient estimate. E[vt+1] ≈ ∇F(xt)
(This is an approximation due to changing xt, but holds for small η).

ECE 5290/7290 & ORIE 5290 23 / 35

Noise reduction

Consider the noise component ϵt = g(xt; ξt)−∇F(xt), where E[ϵt] = 0
and E[∥ϵt∥2

2] ≤ σ2
g + (cg − 1)∥∇F(xt)∥2

2. The momentum becomes:

vt+1 ≈ θvt + (1 − θ)(∇F(xt) + ϵt)

which is a moving average of the gradients and the noise components.

Because E[ϵt] = 0, averaging several ϵt terms together (which is what
vt+1 does over time) tends to reduce the overall magnitude of the noise.

E


∥∥∥∥∥∥

t∑
j=0

θj(1 − θ)ϵt−j

∥∥∥∥∥∥
2

2

 ∝ (1 − θ)2

1 − θ2 σ2
g ≈ 1 − θ

1 + θ
σ2

g

ECE 5290/7290 & ORIE 5290 24 / 35

Vanilla SGD vs. SGD with momentum

Vanilla SGD (B = 1):
g(xt; ξt) = ∇fit(xt) (single sample)
E[∥g(xt; ξt)∥2

2] ≤ σ2
g + cg∥∇F(xt)∥2

2
Prone to high variance in update, especially when ∇F(xt) is small.

SGD with Momentum
vt+1 = θvt + (1 − θ)g(xt; ξt)

The effective variance σ2
mom of vt+1 is much smaller than σ2

g .

E[∥vt+1∥2
2] ≈

(1−θ)2

1−θ2 σ2
g + . . . (simplified)

Result: Faster, more stable convergence, especially in the tail phase
when approaching the minimum.

ECE 5290/7290 & ORIE 5290 25 / 35

Comparison between GD, SGD and momentum SGD

Takeaway: momentum SGD does not fundamentally eliminate variance.

ECE 5290/7290 & ORIE 5290 26 / 35

Table of Contents

Failure mode of averaged iterates

Variance reduction via momentum

Offline variance reduction algorithms

ECE 5290/7290 & ORIE 5290 27 / 35

Momentum helps... but only to a certain extent

Momentum smooths the gradient noise by averaging recent updates:

vt+1 = θvt + (1 − θ)g(xt; ξt).

It reduces the short-term fluctuations of stochastic gradients.
But it does not eliminate the bias from using noisy samples - the
expected gradient still fluctuates around ∇F(xt).
Moreover, once the iterates move far from previous ones, the
accumulated information in vt becomes stale.

ECE 5290/7290 & ORIE 5290 28 / 35

Momentum helps... but only to a certain extent

Variance reduction via momentum is implicit and local.

Question: Can we achieve explicit variance reduction - not just smooth
the noise, but actually construct a lower-variance gradient estimator?

ECE 5290/7290 & ORIE 5290 29 / 35

Variance reduction for finite-sum minimization

Idea: Instead of smoothing gradients implicitly, can we correct noisy
stochastic gradients using information from the full dataset?

In our discussion so far, we focus on the following stochastic problem

F(x) = Eξ[f(x; ξ)]

which we call it as the “online” problem hereafter.

But we in fact first collect n offline training samples in {ξi}n
i=1, and solve

min
x

F(x) := 1
n

n∑
i=1

f(x; ξi)︸ ︷︷ ︸
empirical risk

which we call it as the “offline” problem hereafter.

ECE 5290/7290 & ORIE 5290 30 / 35

SVRG’s variance-reduced gradient estimator

Key difference: SVRG replaces noisy gradients with a corrected version
that re-centers them around the full gradient at a snapshot point.

Periodically calculate the full gradient at a ”snapshot” point x̃.
Use this full gradient as a ”low-variance anchor” to correct

vt
SVRG = ∇fit(xt)−∇fit(x̃) +∇F(x̃)

fit : gradient for the current random sample it.
x̃: snapshot point (updated every epoch).
∇F(x̃): full gradient at x̃.

ECE 5290/7290 & ORIE 5290 31 / 35

The SVRG algorithm

for epoch s = 1, 2, . . .
Compute the full gradient at the snapshot:

∇F(x̃) = 1
n

n∑
i=1

∇fi(x̃) set snapshot x̃ from the last epoch

for inner iteration t = 1, . . . ,m
• Choose a sample it uniformly at random and compute

vt
SVRG = ∇fit(xt)−∇fit(x̃) +∇F(x̃)

• Run the gradient descent update: xt+1 = xt − ηvt
SVRG

end for
end for

Full gradient calculation is expensive but only done once per epoch.
Inside the epoch, computations are two stochastic gradients.

ECE 5290/7290 & ORIE 5290 32 / 35

SVRG: How it reduces variance

Let’s look at the ”noise” of the SVRG gradient:

vt
SVRG −∇F(xt) = (∇fit(xt)−∇F(xt))− (∇fit(x̃)−∇F(x̃))

Unbiased: Yes, E[vt
SVRG] = ∇F(xt).

Key: Both ∇fit(xt) and ∇fit(x̃) use the same random sample it.
• This makes them highly correlated.
• The ”common noise” associated with sample it tends to cancel out

in the difference term ∇fit(xt)−∇fit(x̃).
Variance bound: The variance of vt

SVRG is bounded by:

Var(vt
SVRG) ≤ L2∥xt − x̃∥2

2

ECE 5290/7290 & ORIE 5290 33 / 35

Comparison between GD, SGD and SVRG

Takeaway: Acceleration by explicit variance reduction

ECE 5290/7290 & ORIE 5290 34 / 35

The SVRG’s advantages and online challenge

SVRG’s merits: Leverages the finite-sum structure to introduce
explicit variance reduction:

• Able to use constant stepsize as GD.
• Able to converge as the same convergence rate as GD.
• Average per-iteration cost of SVRG is comparable to that of SGD

SVRG’s limitation: Relies on periodic full gradient computations,
which can be expensive or impossible in:

• Online learning (data arrives as a stream).
• Extremely large datasets where a full pass is too slow.

Recap and fine-tuning

What we have talked about today?
⇒ How to reduce variance by averaging iterates?
⇒ How to reduce variance by momentum?
⇒ How to reduce variance by using the finite-sum structure?

Welcome anonymous survey!

	Failure mode of averaged iterates
	Variance reduction via momentum
	Offline variance reduction algorithms

