Distributed Optimization for Machine Learning

- co-listed in ECE 5290/7290 and ORIE 5290

Tianyi Chen

School of Electrical and Computer Engineering Cornell Tech, Cornell University

August 25, 2025

Who I am, where to find me

- Tianyi Chen (tianyi.chen@cornell.edu)
- Associate Professor, Electrical and Computer Engineering
- Where? We meet here at Bloomberg Center 161
- When? Mondays and Wednesdays 1:25PM 2:40PM
- My office hours, Wednesdays at 5pm 6pm
 - Also by appointment, as long as you have something interesting to chat

Teaching assistant

- A great TA to help you with your homework and projects
- Yuheng Wang
- Ph.D. candidate in Operations Research at Cornell University
- Location: TBD
- Email: yw634@cornell.edu
- Office hour: TBD

Large-scale distributed model training

Why taking this course at this time?

Large-scale model training: Parallel and distributed training

Private distributed learning: Federated learning

Course Content and Importance in ECE

Course workload and grading

Table of Contents

Why taking this course at this time?

Large-scale model training: Parallel and distributed training

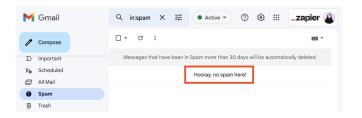
Private distributed learning: Federated learning

Course Content and Importance in ECE

Course workload and grading

ML and AI in everyday life - Pre-Generative AI

Machine learning is used in classifying spam emails, such as in Gmail.



Generative AI in everyday life

Machine learning is nowadays used in drafting and replying emails.

Machine learning (ML) learns pattern from historical data. Assume a old-school ML task - model **House Price** based on **Square Footage**.

Square Footage	Price (\$1000s)
800	150
1200	250
1500	280
2000	350
2400	450
3000	500

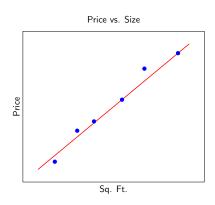
- **Feature** (x): Input variable for predictions (e.g., *square footage*).
- **Label** (y): The "answer" or output we want to predict (e.g., price).
- Training Example: A single row of data, like (1200 sq. ft., \$250k).

Our ML task is to model House Price based on Square Footage.

$$\begin{array}{c} \mathsf{Square}\;\mathsf{Footage} \to x \\ \mathsf{Price} \to y \\ \mathsf{Base}\;\mathsf{Price} \to \theta_0 \\ \mathsf{Price}\;\mathsf{per}\;\mathsf{SqFt} \to \theta_1 \end{array}$$

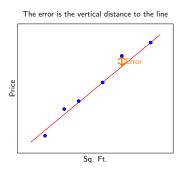
Our Model:

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$



But what are the good parameters θ_0, θ_1 of our ML model?

We need to measure the total **error** of our model. The error is the distance between the actual price and the predicted price.



The Mean Squared Error (MSE) loss averages the square of all errors:

$$L(\theta) = \frac{1}{m} \sum_{i=1}^{m} (\mathsf{Predicted}_i - \mathsf{Actual}_i)^2.$$

The goal of "training" is to find the parameters (θ_0, θ_1) that **minimize** the loss function.

$$\min_{\theta_0,\theta_1} L(\theta_0,\theta_1)$$

Specifically, we want to solve:

$$\min_{\theta_0,\theta_1} \frac{1}{2m} \sum_{i=1}^{m} (\underbrace{(\theta_0 + \theta_1 x_i)}_{\mathsf{Predicted}_i} - \underbrace{y_i}_{\mathsf{Actual}_i})^2$$

Based the **training set**, an optimization algorithm uses to "learn" the best parameters θ_0, θ_1 to minimize the loss functions.

What is distributed optimization?

- Distributed optimization is an approach where multiple entities, or "devices," connected through a distributed system aim to solve an optimization problem by sharing data and/or compute
- Distributed system: A system whose components are located on different networked devices, which communicate and coordinate their actions by passing messages to one another

They may have a common goal or individual interests

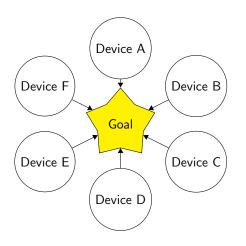


Figure: Distributed devices with a common goal.

They may have a common goal or individual interests

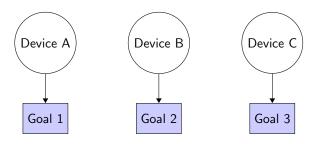
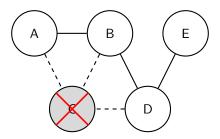


Figure: Distributed devices with individual interests.

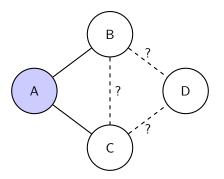
What is unique about distributed systems?

- Typical properties of distributed systems
 - ⇒ Tolerate failures in individual devices



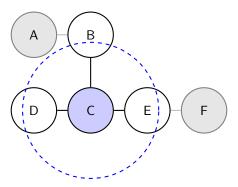
What is unique about distributed systems?

- Typical properties of distributed systems
 - ⇒ System structure (topology, latency) not known in advance



What is unique about distributed systems?

- Typical properties of distributed systems
 - ⇒ Each device has only a limited, incomplete view of the system

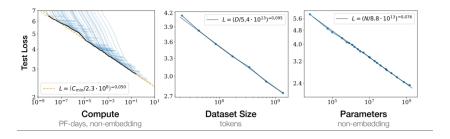


Why distributed optimization?

Why we need to perform AI and optimization in distributed systems?

For scalability and trustworthiness!

Recent success of generative AI and large models



■ Better LLM = Larger dataset, Bigger model, Longer training

Scaling Laws from "Training Compute-Optimal Large Language Models, 2022"

Large-scale distributed model training

Why taking this course at this time?

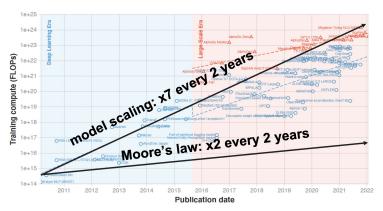
Large-scale model training: Parallel and distributed training

Private distributed learning: Federated learning

Course Content and Importance in ECE

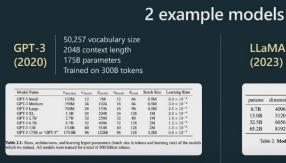
Course workload and grading

Training large models requires large compute



Sevilla et al., "Compute trends across three eras of machine learning," IJCNN 2022.

Thousands of GPUs are needed to train LLMs.



Training: (rough order of magnitude to have in mind)

- O(1,000 10,000) V100 GPUs
- O(1-10) \$M

LLaMA (2023)

32,000 vocabulary size 2048 context length 65B parameters Trained on 1-1.4T tokens

params	dimension	n heads	n layers	learning rate	batch size	n tokens
6.7B	4096	32	32	$3.0e^{-4}$	4M	1.0T
13.0B	5120	40	40	$3.0e^{-4}$	4M	1.0T
32.5B	6656	52	60	$1.5e^{-4}$	4M	1.4T
65.2B	8192	64	80	$1.5e^{-4}$	4M	1.4T

Table 2: Model sizes, architectures, and optimization hyper-parameters.

Training for 65B model:

- · 2,048 A100 GPUs
- · 21 days of training
- \$5M

Recent GPU clusters scale with more than 10000 GPUs

MegaScale: Scaling Large Language Model Training to More Than 10,000 GPUs

Ziheng Jiang^{1,*} Haibin Lin^{1,*} Yinmin Zhong^{2,*} Qi Huang¹ Yangrui Chen¹ Zhi Zhang¹ Yanghua Peng¹ Xiang Li¹ Cong Xie¹ Shibiao Nong¹ Yulu Jia¹ Sun He¹ Hongmin Chen¹ Zhihao Bai¹ Qi Hou¹ Shipeng Yan¹ Ding Zhou¹ Yiyao Sheng¹ Zhuo Jiang¹ Haohan Xu¹ Haoran Wei¹ Zhang Zhang¹ Pengfei Nie¹ Leqi Zou¹ Sida Zhao¹ Liang Xiang¹ Zherui Liu¹ Zhe Li¹ Xiaoying Jia¹ Jianxi Ye¹ Xin Jin^{2,†} Xin Liu^{1,†}

Feb. 23, 2024

¹ByteDance ²Peking University

Abstract

We present the design, implementation and engineering experience in building and deploying MegaScale, a production system for training large language models (LLMs) at the scale of more than 10,000 GPUs. Training LLMs at this scale brings unprecedented challenges to training efficiency and stability. We take a full-stack approach that co-designs the algorithmic and system components across model block and optimizer design, computation and communication overlapping, operserving billions of users, we have been aggressively integrating AI into our products, and we are putting LLMs as a high priority to shape the future of our products.

Training LLMs is a daunting task that requires enormous computation resources. The scaling law [3] dictates that the model size and the training data size are critical factors that determine the model capability. To achieve state-of-the-art model capability, many efforts have been devoted to train large models with hundreds of billions or even trillions of parameters on hundreds of billions or even trillions of to-kens. For example, GPT-3 [4] has 175 billion parameters and

Llama 3 uses 24000 GPUs in LLM training

Apr. 18, 2024

Build the future of Al with Meta Llama 3

To train our largest Llama 3 models, we combined three types of parallelization: data parallelization, model parallelization, and pipeline parallelization. Our most efficient implementation achieves a compute utilization of over 400 TFLOPS per GPU when trained on 16K GPUs simultaneously. We performed training runs on two custom-built 24K GPU clusters. To maximize GPU uptime, we developed an advanced new training stack that automates error detection, handling, and maintenance. We also greatly improved our

[Introducing Meta Llama 3: The most capable openly available LLM to date]

Distributed training is extremely challenging

Stability

Definition: maintain consistent performance under a steady load and to recover quickly from faults.

Figure: The system hits a snag but quickly returns to normal.

Scalability

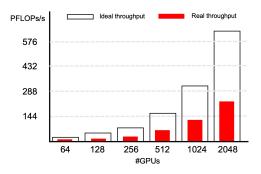
Definition: A system's ability to handle a growing amount of load by adding more GPUs.

Figure: As load increases, we add more GPUs (green) to maintain performance.

Distributed training is extremely challenging

- The communication overhead and GPU idle time hamper scalability
- Each GPU can only achieve 30%-55% of its peak compute power
- The system achieves 30% scalability inefficient

30% of its peak FLOPs/s visualization



Privacy-preserving distributed learning

Why taking this course at this time?

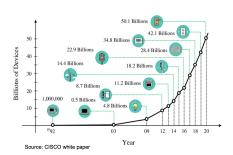
Large-scale model training: Parallel and distributed training

Private distributed learning: Federated learning

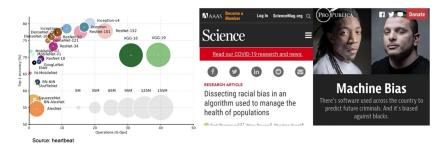
Course Content and Importance in ECE

Course workload and grading

Where are the high-quality data today?



The importance of data sharing



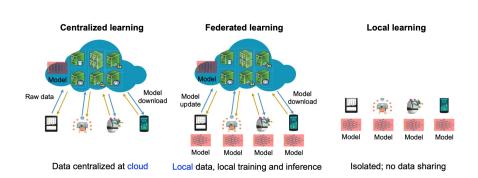
Train large AI/ML models

Reduce data bias

Stringent data privacy regulation

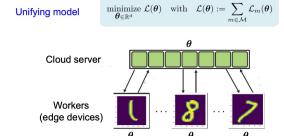
Picture credit: WSJ, The Economist

A representative paradigm - Federated learning



B. McMahan and D. Ramage, "Federated learning: Collaborative machine learning without centralized training data," Google Research Blog, April 2017.

Distributed optimization for federated learning



- Worker $m \in \mathcal{M} := \{1, \dots, M\}$ keeps local data $\{\mathbf{x}_n, y_n, \, n \in \mathcal{N}_m\}$
- ☐ Iterative solvers: gradient descent (GD), stochastic GD, Adam, momentum methods ...

e.g., loss of classification;

(nonlinear) regression

Table of Contents

Why taking this course at this time?

Large-scale model training: Parallel and distributed training Private distributed learning: Federated learning

Course Content and Importance in ECE

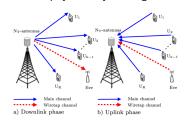
Course workload and grading

Distributed optimization appears in many ECE areas

Parameter estimation

Linear quadratic control

Wireless physical-layer designs



EV scheduling and load balancing

But different from optimization in other ECE areas

Aspect	Traditional ECE Optimization	Machine Learning Optimization
Objective basis	Function derived from system dy- namics, physics, signal models, or cost structures. Often explicit.	Primarily empirical risk (average loss on training data) plus regularization terms to aid generalization.
Scale & complexity	Varies, but often lower/moderate dimension. Can be convex, linear, or non-linear with known structure.	Typically high-dimensional, non- convex and often stochastic (due to data batches).
Key challenge	Ensuring model fidelity, handling physical/operational constraints, computational tractability.	Ensuring high efficiency in terms of model and data size; ensuring the learned model generalizes rather than memorizes.
Dominant methods	Diverse toolbox: Convex Optimization, Gradient Descent, DP, Kalman Filters, Simplex, etc.	Heavily relies on Stochastic Gradient Descent and its adaptive variants due to scale & data structure.

What will be covered in this class?

Learning and Optimization in Distributed Settings

- Abstract yet fundamental models under distributed systems
- (Mostly) generic yet simple optimization algorithms
 - ⇒ Use several examples to illustrate their utility
- Rigorous analysis of distributed optimization algorithms
- Numerical simulations using toolboxes (homework + project)

Alert!!!

Neither about hardware implementation nor system designs.

A course about algorithms and applications of distributed AI and ML.

What will not be covered in this class?

- Hardware wireless sensor
- Cost \$100-400

Raspberry Pi

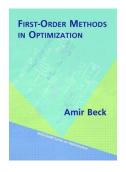
Bottom line: no physical systems; no hand-on experiences using hardware

■ Leon Bottou, Frank E. Curtis, and Jorge Nocedal, "Optimization Methods for Large-Scale Machine Learning," SIAM Review

This monograph provides a focused overview and synthesis of stochastic gradient methods (SGD) specifically tailored to the challenges and structure of large-scale machine learning problems. It also excels at discussing the interplay between optimization algorithm design and ML-specific goals like generalization.

Amir Beck, "First-Order Methods in Optimization," SIAM Series Optm. This book heavily emphasizes the gradient-based algorithms

(Gradient Descent, Momentum, Nesterov Acceleration, Proximal Gradient methods) used in large-scale ML training. It provides the foundational theory for why these algorithms work.

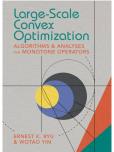


Sebastien Bubeck, "Convex Optimization: Algorithms and Complexity,"
Foundations and Trends in Optimization

This book has comprehensive coverage of convex optimization theory with a strong emphasis on algorithmic complexity. It delves into understanding the efficiency limits (lower bounds) and performance guarantees (upper bounds) of algorithms.

■ Ernest Ryu, Wotao Yin, "Large-Scale Convex Optimization: Algorithms & Analyses via Monotone Operators," Cambridge University Press.

This books is unique in its use of monotone operator theory as a unifying framework to analyze a vast array of optimization algorithms, particularly those relevant to large-scale problems. This includes many splitting methods (like ADMM, Douglas-Rachford) often used for structured optimization problems common in signal processing, statistics, and certain areas of ML.



Four thematic blocks (*represents optional content)

Basics of probability, machine learning, and empirical risk minimization

- (I) First-order optimization (4 lectures)
 - Gradient methods
 - Subgradient methods
 - · Accelerated gradient methods

Reading: [Bubeck, Ch. 3.1-3.5, 3.7, 4.1-4.3; Beck Ch. 3, 5, 9, 10]

- (II) Stochastic and nonconvex optimization (4 lectures)
 - Stochastic approximation and stochastic gradients
 - Finite-sum minimization and variance reduction
 - Escaping saddle point methods

Reading: [Bubeck, Ch. 6; Beck Ch. 8; and reference papers]

Four thematic blocks (cont'd)

(III) Advanced topics on distributed optimization (8 lectures)

- Consensus averages and gossips
- Distributed optimization: Local averages and decentralized gradients
- Alternating direction methods of multiplier (ADMM)
- Multi-level optimization: implicit gradient and penalty methods*

Reading: [Ryu and Yin, Ch. 6, 8, 11; Beck Ch. 15; and reference papers]

(IV) Applications to distributed learning and computing (8 lectures)

- Federated learning over wireless networks
- · Large language model (LLM) pre-training and post-training
- Analog in-memory training and inference
- Hardware-aware low-precision training*

Reading: [Suggested reference papers]

Table of Contents

Why taking this course at this time

Large-scale model training: Parallel and distributed training Private distributed learning: Federated learning

Course Content and Importance in ECE

Course workload and grading

Prerequisites

(I) Calculus, linear algebra and probability

- Integrals, derivatives, limits, infinite series
- Vector/matrix notation, systems of linear equations, eigenvalues
- Expectations, moments (mean, variance), and conditional probability

(II) Machine learning concepts

- Familiarity with supervised learning (e.g., regression, classification, empirical risk minimization)
- No advanced background required core ideas will be reviewed

(III) Programming in Python or Matlab

- Needed for homework and projects
- If you know programming you can learn Matlab in one afternoon

Course grading

- (I) Homework sets worth 30 points (6 points per homework)
 - A hands-on "guided exploration" where students implement large-scale optimization algorithms based on course materials and other resources in real-world applications using Python/MATLAB.
- (II) One in-class exam worths 40 points
 - October 27, closed book, 2 pages hand-written notes allowed
- (III) Comprehensive assignments worth 30 points
 - Literature review: culminate in a well-structured written report, demonstrating the ability to contextualize and assess existing work
 - Or, Course project: apply concepts from the course to a practical or theoretical problem in large-scale distributed optimization

About homework - Analytical

(A) Analytical: Proximal operator of a convex function g is defined as:

1.

$$\operatorname{prox}_g(v) = \operatorname{argmin}_x g(x) + \frac{1}{2}||x - v||_2^2. \quad \text{(Prox)}$$

- 2. Explain concisely why (Prox) has a unique solution.
- What optimality condition must be satisfied for x* to be the minimizer of (Prox)?
- 4. Let $\alpha > 0$. Predict the behavior of

$$\operatorname{prox}_{\alpha g}(v) = \operatorname{argmin}_{x} \alpha g(x) + \frac{1}{2}||x - v||_{2}^{2}$$

as $\alpha \to 0$ and as $\alpha \to \infty$.

About homework - Programming

(B) Programming: Consider the LASSO problem:

1.

$$x^* = \operatorname{argmin}_{x \in \mathbb{R}^d} \frac{1}{2} ||Ax - b||_2^2 + \lambda ||x||_1$$
 (LASSO)

- 2. Write the expression for x_{t+1} in the proximal gradient descent method (also known as ISTA Iterative Shrinkage-Thresholding Algorithm) for solving (LASSO), using the soft-shrinkage operator $S_{\alpha}(\cdot)$. Assume stepsizes α_t are given.
- 3. Write a Python function '[xT, objhist] = istaLasso(A, b, lambda-reg, x0, alpha, T)' that returns x_T , the T-th iterate of ISTA for (LASSO) with initial iterate 'x0' and constant stepsize 'alpha'. It should also return a vector 'objhist' containing the objective values at iterates x_0, \ldots, x_T . Use your 'softShrink' function.

About course project

This project is designed to complement your understanding of the material through in-depth reading and/or hands-on research.

(A) Educational projects (5290 students)

 Develop detailed lecture notes and a 20-minute corresponding presentation on a topic related to but not covered in the course.
This must include an empirical evaluation of the methods discussed.
Educational projects should include a problem set, complete with solutions, designed to test understanding.

(B) Research projects (7290 students)

 Conduct original research related to the course content. This may involve theoretical analysis, algorithm development, or novel applications. Applying existing methods to a new dataset without a significant technical contribution is not acceptable. Research results will be presented in a 20-minute presentation and in a report.

About course project (cont'd)

This project is designed to complement your understanding of the material through in-depth reading and/or hands-on research.

The project consists of several key milestones:

(A) Progress Report

 Submit a draft of your semi-final report. Research projects should include a complete introduction, related work, and preliminary results. Educational projects should provide detailed lecture notes, including mathematical details and problem set drafts.

(B) Final Deliverables

- A GitHub repository with reproducible code and data scripts.
- A slide deck for your 20-minute presentation.
- A final workshop-style report.

Final grading

- Overall grading
- At least 60 points are required for passing (C grade)
- At least 75 points to get B grade
- At least 90 points to get A grade
 - ⇒ Goal is for everyone to get an A

Online learning platforms

- Canvas Major hub (https://canvas.cornell.edu/)
 - ⇒ Post notes, lecture slides, and recommended readings
 - ⇒ Post major announcements
- Ed Discussion
 - ⇒ Interactive discussion for students and instructors
 - ⇒ Encourage peer-to-peer support while instructors can endorse
- Gradescope
 - ⇒ Support for paper-based scanning and online submissions
 - ⇒ Grade problem sets, quizzes, and exams with rubrics

Recap and preview

- What we have talked about today?
 - ⇒ Why we want to learn this course?
 - ⇒ What will be covered in this course?
 - ⇒ What will not be covered in this course?
 - ⇒ How to get an A in this course?

Fill out course survey

To help us tailor this course to your background, please take a few minutes to complete our brief, anonymous welcome survey.

