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Who | am, where to find me

Tianyi Chen (tianyi.chen@cornell.edu)

Associate Professor, Electrical and Computer Engineering
Where? We meet here at Bloomberg Center 161

When? Mondays and Wednesdays 1:25PM - 2:40PM

My office hours, Wednesdays at 5pm - 6pm

® Also by appointment, as long as you have something interesting to chat
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Teaching assistant

A great TA to help you with your homework and projects

Yuheng Wang

Ph.D. candidate in Operations

Research at Cornell University ‘“‘W
Location: TBD P e N

Email: yw634Qcornell.edu
Office hour: TBD
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Large-scale distributed model training

Why taking this course at this time?
Large-scale model training: Parallel and distributed training
Private distributed learning: Federated learning

Course Content and Importance in ECE

Course workload and grading
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ML and Al in everyday life - Pre-Generative Al

Machine learning is used in classifying spam emails, such as in Gmail.
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Messages that have been in Spam more than 30 days will be automatically deleted.

Hooray, no spam here!
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Generative Al in everyday life

Machine learning is nowadays used in drafting and replying emails.
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Get help writing a message from scratch, or
refine what you already have
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Why optimization is crucial for ML and Al?

Machine learning (ML) learns pattern from historical data. Assume a
old-school ML task - model House Price based on Square Footage.

Square Footage Price ($1000s)

800 150
1200 250
1500 280
2000 350
2400 450
3000 500

m Feature (x): Input variable for predictions (e.g., square footage).

m Label (y): The "answer” or output we want to predict (e.g., price).
m Training Example: A single row of data, like (1200 sq. ft., $250k).
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Why optimization is crucial for ML and Al?

Our ML task is to model House Price based on Square Footage.

Price vs. Size

Square Footage — x
Price —» y
Base Price — 6y

Price

Price per SqFt — 6,

Our Model:

hg(X) =0y + 01x

Sq. Ft.

But what are the good parameters 6, 61 of our ML model?
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Why optimization is crucial for ML and Al?

We need to measure the total error of our model. The error is the
distance between the actual price and the predicted price.

The error is the vertical distance to the line

iy

Price

Sq. Ft.

The Mean Squared Error (MSE) loss averages the square of all errors:

m

1
L() = — Z(Predicted,- — Actual;)?.

, =
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Why optimization is crucial for ML and Al?

The goal of "training” is to find the parameters (6, 6;) that minimize
the loss function.

mingo,gl L(eo, 91)

Specifically, we want to solve:
1 m

in — ) O01x;)— yi )?

it o 2B £ 1) = ¥ )

Predicted; Actual;

Based the training set, an optimization algorithm uses to "learn” the

best parameters g, 61 to minimize the loss functions.
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What is distributed optimization?

m Distributed optimization is an approach where multiple entities, or
“devices,” connected through a distributed system aim to solve an
optimization problem by sharing data and/or compute

m Distributed system: A system whose components are located on
different networked devices, which communicate and coordinate
their actions by passing messages to one another
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They may have a common goal or individual interests

Device A

Device D

Figure: Distributed devices with a common goal.
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They may have a common goal or individual interests

Device A

Goal 1

Figure: Distributed devices with individual interests.

Device B

Goal 2
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What is unique about distributed systems?

m Typical properties of distributed systems
= Tolerate failures in individual devices
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What is unique about distributed systems?

m Typical properties of distributed systems

= System structure (topology, latency) not known in advance
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What is unique about distributed systems?

m Typical properties of distributed systems
= Each device has only a limited, incomplete view of the system
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Why distributed optimization?

Why we need to perform Al and optimization in
distributed systems?

For scalability and trustworthiness!
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Recent success of generative Al and large m

Test Loss

odels
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L= (Cmin/2.3+108)=0050 24
i0-* 1077 107° 107® 107! 1 27 108 10° 10° 107 10°
Compute Dataset Size Parameters
PF-days, non-embedding tokens non-embedding

m Better LLM = Larger dataset, Bigger model, Longer training

Scaling Laws from “Training Compute-Optimal Large Language Models, 2022"
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Large-scale distributed model training

Why taking this course at this time?
Large-scale model training: Parallel and distributed training
Private distributed learning: Federated learning

Course Content and Importance in ECE

Course workload and grading
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Training large models requires large compute

Large-Scale Era
>

Deep Learning Era

Training compute (FLOPS)

2016

Publication date

Sevilla et al., “Compute trends across three eras of machine learning,” IJCNN 2022.
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Thousands of GPUs are needed to train LLMs

2 example models

48 context length 2048 context length
(2020) 175B parameters (2023) 65B parameters

Trained on 300B tokens Trained on 1-1.4T tokens

Mol Kame

parums dimension m heads n layers leaming rate  baichsize n tokens
678 4096 32 30et
: : 1308 5120 0 3.0e~
G367 . 3 3 M 1258 6656 52 1564
GPT3 138 5 2 L0 10 528 192 154
GPT3 1758 ur “GPT-4" £ s 0.0 » 10~ & i i B

architestares, and
AL soeatels et
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Recent GPU clusters scale with more than 10000 GPUs

MegaScale: Scaling Large Language Model Training to More Than|10,000 GPUs

Ziheng Jiang!* Haibin Lin'* Yinmin Zhong>* Qi Huang! Yangrui Chen! Zhi Zhang'
Yanghua Peng! Xiang Li' Cong Xie! Shibiao Nong! YuluJia! Sun He! Hongmin Chen!
Zhihao Bai' Qi Hou' Shipeng Yan! Ding Zhou' Yiyao Sheng! Zhuo Jiang!
Haohan Xu'! Haoran Wei! Zhang Zhang! Pengfei Nie! Leqi Zou! SidaZhao!
Liang Xiang' Zherui Liu! Zhe Li' Xiaoying Jia' Jianxi Ye! XinJin®>" Xin Liu®¥

ByteDance 2Peking University

Feb. 23, 2024

Abstract

‘We present the design, impl ion and ing ex-
perience in building and deploying MegaScale, a production
system for training large language models (LLMs) at the scale
of more than 10,000 GPUs. Training LLM:s at this scale brings
unprecedented challenges to training efficiency and stability.
‘We take a full-stack approach that co-designs the algorithmic
and system components across model block and optimizer
design, computation and communication overlapping, oper-

serving billions of users, we have been aggressively integrat-
ing Al into our products, and we are putting LLMs as a high
priority to shape the future of our products.

Training LLMs is a daunting task that requires enormous
computation resources. The scaling law [3] dictates that the
model size and the training data size are critical factors that
determine the model capability. To achieve state-of-the-art
model capability, many efforts have been devoted to train
large models with hundreds of billions or even trillions of
parameters on hundreds of billions or even trillions of to-
kens. For example, GPT-3 [4] has 175 billion parameters and
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Llama 3 uses 24000 GPUs in LLM training

Build the future of Al
with Meta Llama 3

Apr. 18, 2024

To train our largest Llama 3 models, we combined three types of parallelization: data
parallelization, model parallelization, and pipeline parallelization. Our most efficient
implementation achieves a compute utilization of over 400 TFLOPS per GPU i

on 16K GPUs simultaneously. We performed training runs on two custom-built| 24K GPU i
clusters. To maximize GPU uptime, we developed an advanced new training stack that
automates error detection, handling, and maintenance. We also greatly improved our

[Introducing Meta Llama 3: The most capable openly available LLM to date]
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Distributed training is extremely challenging

Stability Scalability
Definition: maintain consistent Definition: A system'’s ability to
performance under a steady load handle a growing amount of load by
and to recover quickly from faults. adding more GPUs.
E: th Initial Load Increased Load
Time Figure: As load increases, we add more
Figure: The system hits a snag but GPUs (green) to maintain performance.

quickly returns to normal.

@
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Distributed training is extremely challenging

m The communication overhead and GPU idle time hamper scalability
m Each GPU can only achieve 30%-55% of its peak compute power

m The system achieves 30% scalability - inefficient

30% of its peak FLOPs/s visualization

PFLOPSs/s [ Ideal throughput ~ WEEEEEE Real throughput
576
432
288
144 l

64 128 256 512 1024 2048
#GPUs
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Privacy-preserving distributed learning

Why taking this course at this time?
Large-scale model training: Parallel and distributed training
Private distributed learning: Federated learning

Course Content and Importance in ECE

Course workload and grading
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Where are the high-quality data today?

50.1 Billions

42.1 Billions @ H
50

34.8 Billions

2 22.9 Billions 28.4 Billions (23]
Zo L
g 14.4 Billions 182 Billions qb
S 30
5 $.7 Billions 11.2 Billions @
= 2 .
@ 1,000,000 0.5 Billions |
o @ g 48 Billions @ )

1995

Year

Source: CISCO white paper
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The importance of data sharing

AVAAAS [EOM®  Login  ScienceMag.org I, Donate
Inception-va Member

DenseNet. ResNet-101 \esNet .
D weos  veas Science

Q Resnet-34
MobileN 2
MobleNet-v1 Read our COVID-19 research and news.
ResNet-18
00 siener
ENeP

g7
S e b f6Mobienet
Bo| oo, ReseaRcH ARTIcLE Machine Bias
I I R A=< Dissecting racial bias in an )
BN-AlexNet algorithm used to manage the here's software used across the country to
5 At A predict criminals. And it's biased
health of populations

against blacks

10 20 30
Operations (G-Ops)

Source: heartbeat

Train large AI/ML models Reduce data bias
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Stringent data privacy regulation

\pple: don't Blame iCloud
celebrity hacking

wsj.com/theshortanswer
@jason bellini

Picture credit: WSJ, The Economist

Companies should take California’s new
data-privacy law seriously

‘The state’s sweeping online regulations come into force on January 1st
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A representative paradigm - Federated learning

Centralized learning Federated learning Local learning

Model .
// \\ N}Wnload -1 @ I
= . = -
- - - - Model Model ~ Model  Model

Model Model  Model  Model

I \W"':'“ et //
=

Data centralized at cloud Local data, local training and inference Isolated; no data sharing

B. McMahan and D. Ramage, “Federated learning: Collaborative machine learning without centralized training data,” Google Research Blog, April 2017.
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Distributed optimization for federated learning

ifvi minimize £(6) with £(0) := L (0) e.g. loss of classification;
Sniiyihg)mipds! Oerd 7,§4 (nonlinear) regression

[/}
Cloud server " “ " Iﬂ ll " {{
Workers L o . ;
(edge devices)
6 6 0
= Worker m € M :={1,..., M} keeps local data {Xn,¥n, 7 € Nin}

Q lterative solvers: gradient descent (GD), stochastic GD, Adam, momentum methods ...
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Distributed optimization appears in many ECE areas

Wireless physical-layer designs

Parameter estimation

@u @U.

NT -ante nnn

ﬁuk ' \ @Uk '
® (R

Np-ant nus

,

Main
------ -> Wiretap channel

a) Downlink phase b) Uplink phase

———>  Main channel

EV scheduling and load balancing

Linear quadratic control
Algorithm

Simulation

Scenarios Validation
. .
[a]
ACN-Data ACN-Sim ACN-Live S
2 S
a8 t Constraints t &
7=~ :
Adaptive Charging Network
34/55
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But different from optimization in other ECE areas

Aspect

Traditional ECE Optimization

Machine Learning Optimization

Objective basis

Scale & complexity

Key challenge

Dominant methods

Function derived from system dy-
namics, physics, signal models, or
cost structures. Often explicit.

Varies, but often lower/moderate
dimension. Can be convex, linear,
or non-linear with known structure.

Ensuring model fidelity, handling
physical /operational  constraints,
computational tractability.

Diverse toolbox: Convex Opti-
mization, Gradient Descent, DP,
Kalman Filters, Simplex, etc.

Primarily empirical risk (average
loss on training data) plus regular-
ization terms to aid generalization.

Typically high-dimensional, non-
convex and often stochastic (due
to data batches).

Ensuring high efficiency in terms
of model and data size; ensur-
ing the learned model generalizes
rather than memorizes.

Heavily relies on Stochastic Gradi-
ent Descent and its adaptive vari-
ants due to scale & data structure.
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What will be covered in this class?

Learning and Optimization in Distributed Settings

Abstract yet fundamental models under distributed systems

(Mostly) generic yet simple optimization algorithms

= Use several examples to illustrate their utility

Rigorous analysis of distributed optimization algorithms

Numerical simulations using toolboxes (homework + project)

Cornell Tech ECE Course 36 /55



Alert!!!

Neither about hardware implementation nor system designs.

A course about algorithms and applications of distributed Al and ML.
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What will not be covered in this class?

m Hardware wireless sensor
m Cost $100-400

m Raspberry Pi

Bottom line: no physical systems; no hand-on experiences using hardware
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Recommended textbooks and monographs

m Leon Bottou, Frank E. Curtis, and Jorge Nocedal, “Optimization Methods
for Large-Scale Machine Learning,” SIAM Review

This monograph provides a focused overview and synthesis of
stochastic gradient methods (SGD) specifically tailored to the
challenges and structure of large-scale machine learning problems. It
also excels at discussing the interplay between optimization
algorithm design and ML-specific goals like generalization.

c L
REVIEW
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Recommended textbooks and monographs

® Amir Beck, “First-Order Methods in Optimization,” SIAM Series Optm.
This book heavily emphasizes the gradient-based algorithms

(Gradient Descent, Momentum, Nesterov Acceleration, Proximal
Gradient methods) used in large-scale ML training. It provides the
foundational theory for why these algorithms work.

FIRsT-ORDER METHODS
IN OPTIMIZATION

Amir Beck
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Recommended textbooks and monographs

m Sebastien Bubeck, “Convex Optimization: Algorithms and Complexity,”
Foundations and Trends in Optimization

This book has comprehensive coverage of convex optimization
theory with a strong emphasis on algorithmic complexity. It delves
into understanding the efficiency limits (lower bounds) and
performance guarantees (upper bounds) of algorithms.
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http://sbubeck.com/Bubeck15.pdf

Recommended textbooks and monographs

® Ernest Ryu, Wotao Yin, “Large-Scale Convex Optimization: Algorithms &
Analyses via Monotone Operators,” Cambridge University Press.

This books is unique in its use of monotone operator theory as a
unifying framework to analyze a vast array of optimization
algorithms, particularly those relevant to large-scale problems. This
includes many splitting methods (like ADMM, Douglas-Rachford)
often used for structured optimization problems common in signal
processing, statistics, and certain areas of ML.

Large-Scale
Convex
Optimization
ALGORITHMS & ANALYSES
via MONOTONE OPERATORS

ERNEST K. RYU -~
& WOTAO YIN
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Four thematic blocks (*represents optional content)

Basics of probability, machine learning, and empirical risk minimization

(I) First-order optimization (4 lectures)

¢ Gradient methods
® Subgradient methods
® Accelerated gradient methods

Reading: [Bubeck, Ch. 3.1-3.5, 3.7, 4.1-4.3; Beck Ch. 3,5, 9 ,10]

(1) Stochastic and nonconvex optimization (4 lectures)

® Stochastic approximation and stochastic gradients
® Finite-sum minimization and variance reduction
¢ Escaping saddle point methods

Reading: [Bubeck, Ch. 6; Beck Ch. 8; and reference papers]

Cornell Tech ECE Course 43 /55



Four thematic blocks (cont'd)

(II) Advanced topics on distributed optimization (8 lectures)

Consensus averages and gossips

Distributed optimization: Local averages and decentralized gradients
Alternating direction methods of multiplier (ADMM)

Multi-level optimization: implicit gradient and penalty methods*

Reading: [Ryu and Yin, Ch. 6, 8, 11; Beck Ch. 15; and reference papers]

(IV) Applications to distributed learning and computing (8 lectures)

¢ Federated learning over wireless networks

® Large language model (LLM) pre-training and post-training
® Analog in-memory training and inference

® Hardware-aware low-precision training*

Reading: [Suggested reference papers]
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Prerequisites

(I

(I

)
)

—~~
[ | m — [ |

Calculus, linear algebra and probability
Integrals, derivatives, limits, infinite series
Vector/matrix notation, systems of linear equations, eigenvalues

Expectations, moments (mean, variance), and conditional probability

Machine learning concepts

Familiarity with supervised learning (e.g., regression, classification,
empirical risk minimization)

No advanced background required - core ideas will be reviewed
Programming in Python or Matlab
Needed for homework and projects

If you know programming you can learn Matlab in one afternoon

Cornell Tech ECE Course
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Course grading

(I) Homework sets worth 30 points (6 points per homework)

m A hands-on “guided exploration” where students implement
large-scale optimization algorithms based on course materials and
other resources in real-world applications using Python/MATLAB.

(I1) One in-class exam worths 40 points

m October 27, closed book, 2 pages hand-written notes allowed

(I11) Comprehensive assignments worth 30 points

m Literature review: culminate in a well-structured written report,
demonstrating the ability to contextualize and assess existing work

m Or, Course project: apply concepts from the course to a practical or
theoretical problem in large-scale distributed optimization
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About homework - Analytical

(A) Analytical: Proximal operator of a convex function g is defined as:
b 1
prox,(v) = argmin, g(x) + EHX —v|[3. (Prox)

2. Explain concisely why (Prox) has a unique solution.

3. What optimality condition must be satisfied for x* to be the
minimizer of (Prox)?

4. Let a > 0. Predict the behavior of

. 1
prox,.,(v) = argmin, ag(x) + 5|x — vIl

as a — 0 and as a — oo.
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About homework - Programming

(B) Programming: Consider the LASSO problem:
1.
* . 1
X" = argmin, cga 5 || Ax — bl|3+ M|x|l  (LASSO)

2. Write the expression for x;+1 in the proximal gradient descent
method (also known as ISTA - Iterative Shrinkage-Thresholding
Algorithm) for solving (LASSO), using the soft-shrinkage operator
Sa(+). Assume stepsizes a; are given.

3. Write a Python function ‘[xT, objhist] = istaLasso(A, b, lambda-reg,
x0, alpha, T)' that returns xr, the T-th iterate of ISTA for (LASSO)
with initial iterate 'x0‘ and constant stepsize ‘alpha’. It should also
return a vector ‘objhist’ containing the objective values at iterates
Xo, - - ., xT. Use your ‘softShrink" function.
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About course project

This project is designed to complement your understanding of the
material through in-depth reading and/or hands-on research.

(A) Educational projects (5290 students)

Develop detailed lecture notes and a 20-minute corresponding
presentation on a topic related to but not covered in the course.
This must include an empirical evaluation of the methods discussed.
Educational projects should include a problem set, complete with
solutions, designed to test understanding.

(B) Research projects (7290 students)

©)

Conduct original research related to the course content. This may
involve theoretical analysis, algorithm development, or novel
applications. Applying existing methods to a new dataset without a
significant technical contribution is not acceptable. Research results
will be presented in a 20-minute presentation and in a report.

Cornell Tech ECE Course
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About course project (cont'd)

This project is designed to complement your understanding of the
material through in-depth reading and/or hands-on research.

The project consists of several key milestones:

(A) Progress Report

Submit a draft of your semi-final report. Research projects should
include a complete introduction, related work, and preliminary
results. Educational projects should provide detailed lecture notes,
including mathematical details and problem set drafts.

(B) Final Deliverables

A GitHub repository with reproducible code and data scripts.
A slide deck for your 20-minute presentation.
A final workshop-style report.

©)
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Final grading

m Overall grading

m At least 60 points are required for passing (C grade)
m At least 75 points to get B grade

m At least 90 points to get A grade

= Goal is for everyone to get an A
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Online learning platforms

m Canvas - Major hub (https://canvas.cornell.edu/)

= Post notes, lecture slides, and recommended readings

= Post major announcements
m Ed Discussion

= Interactive discussion for students and instructors

= Encourage peer-to-peer support while instructors can endorse
m Gradescope

= Support for paper-based scanning and online submissions

= Grade problem sets, quizzes, and exams with rubrics
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Recap and preview

m What we have talked about today?
= Why we want to learn this course?
= What will be covered in this course?
= What will not be covered in this course?
= How to get an A in this course?
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Fill out course survey

To help us tailor this course to your background, please take a few
minutes to complete our brief, anonymous welcome survey.
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