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Objective of This Assignment

The objective of this assignment is to gain a foundational understanding of the key concepts, practical
implementation of distributed learning, and how it can accelerate the training. You will begin by learning
the crucial concepts and implementing your first distributed program to get your feet wet. Based on that, you
will implement one of the central operations in distributed learning all-reduce and compare the complexity
of different implementations. Finally, you will be guided to implement your distributed training algorithm.

We will provide a starter code framework on the CANVAS course website in the format of
Python notebooks. There are two kinds of questions:

Q1 Programming: Even though the framework is offered, key functions in the notebook are left blank
with a placeholder raise NotImplementedError. You are responsible for completing the functions.
Remove the placeholder after you complete them.

Q2 Question: You are responsible for answering the questions posed in the notebook.

Note: There is no autograder for this project, since you can verify that your code outputs the correct thing

by just comparing it to the baseline methods provided. Grading will be performed based on your lab report
and on manual inspection of your code. Furthermore, the experiments in this project can take some time
to complete. On my computer, they take about 15 minutes to run in total (across all experiments). Please
ensure you leave enough time to complete the experimental exploration.

Task 0: Setup the environment (0%)

The first task will guide you to get your environment ready. In this homework, only PyTorch package is
required. If you have already had a proper environment, you could skip this part. Note: Do not use the
package except PyTorch.

The starter code is provided in the format of Python notebook (ipynb). You could run the notebook on
various platforms, like Jupyter Notebook, Google Colab, and VS Code. We suggest using Conda package
manager to set up the environment. Run conda env create -f environment-cpu.yml to create a virtual
environment and use conda activate ECE5290-HW3-cpu to activate it.

Task 1: Distributed operations (15 points)

You will utilize the PyTorch Distributed library, which comprises a collection of parallelism modules, a
communication layer, and infrastructure for launching and debugging large-scale training jobs. The library



can use either a CPU or GPU backend, depending on your hardware and configuration. If you have a server
with multiple GPUs, you could use NCCL as the backend; otherwise, you could use Gloo as the backend.
In the homework, only the CPU is required. Refer to the official PyTorch Distributed Documentation for
guidance.

Step 1: Distributed “Hello World” (5 points)

The first step of Task 1 is to get familiar with the concept of distributed computing. Additionally, you need
to let each worker say hello to you, which ensures you have a correct distributed environment.

In distributed computing, two fundamental concepts are world size and rank, which provide the necessary
context for managing data, synchronizing model updates, and orchestrating the entire distributed training
workflow. World size refers to the total number of processes participating in a distributed computing job.
This is the global count of all workers, which could be across multiple machines or multiple GPUs on a
single machine. Rank, on the other hand, is the unique identifier assigned to each individual process within
the distributed group. Each process has a distinct rank ranging from 0 to world size - 1. This unique
identifier is crucial for coordinating communication and ensuring that each process knows its specific role in

the training task, such as which partition of data or which subset of a model it is responsible for.

The entry of a distributed program is something like spawn (func), where spawn functions generate a series
of workers and func. In this task, you will define different func according to different requirements. As the
first step, you need to define a func to let workers say hello to you.

Requirements: Let each worker print its rank and your name. For example, if you are Alice, your output
should be like

Rank 1: Hello, Alice!
Rank 2: Hello, Alice!
Rank 3: Hello, Alice!
Rank 4: Hello, Alice!

Step 2: Communication among workers (10 points)

In the second step, you will get familiar with the primitives send and recv functions, which enable point-
to-point communication between two workers.

Requirements: You will need to read their documents and answer some questions posed in the notebook.
Furthermore, you need to implement a code that allows workers to send messages to others.

Task 2: All-reduction operation (50 points)

In this task, you will implement a key collective communication operation, all-reduce, using only the prim-
itive send and recv functions. Your implementation should not rely on any other collective communication
functions. Let x, be a tensor on worker n, the result of all-reduce is that all workers have a copy of
Zg;ol Zn. As we will see in Task 3, distributed SGD involves all-reduce at each iteration. Therefore,
all-reduce plays a critical role in the training. You will compare the efficiency of two major methods to

implement all-reduce.


https://docs.pytorch.org/docs/stable/distributed.html

Step 1: Tree-all-reduce (20 points)

In the first step, you will be guided to implement the Tree-all-reduce algorithm, which operates in two
distinct phases to achieve a global reduction across all processes. In each phase, the data flow follows a
binary tree communication pattern.

Phase I: Reduce-to-Root. Phase I aims to re-
duce the data to one specific worker. In this phase,
data flows from the leaves of the tree up to the root.
In the example in Figure 1, the first row shows the
initial state, with four independent workers (P1, P2,
P3, P4) at a leaf node that start with their local data
ZT,. In each communication step, a worker n sends
its current data z,, to its parent node n’. The par-
ent node receives data from its children, performs
the reduction operation (e.g., summation), and com-
bines the received data with its own local value, i.e.,
Ty 4 Ty + T,. In the example, the leaves of the
tree (P2 and P4) send their data to their respec-
tive parents (P1 and P3). P1 receives data from P2,
and P3 receives data from P4. This process repeats,

Figure 1: Data flow of Tree-all-reduce for four pro-

with intermediate nodes sending their partially re- o
cesses (P1, P2, P3, P4) across two distinct phases.

duced values further up the tree, until the root node
has received and processed data from all its children, at which point it holds the final, globally reduced value.
In our example, the root worker, P1, holds the final, globally reduced result from all four processes.

Phase II: Broadcast-from-Root: The second phase ensures all workers have a copy of the final reduced
result. In this phase, the final reduced value, now residing at the root (P1), is broadcast down the tree to
all other workers. The root sends the result to its children. Each child, upon receiving the value, then sends
it to its own children, and so on. This process continues until the result is disseminated to every worker.

Requirements: Answer the following questions or finish the functions in the notebook:

(a) (5 points) Given a system with N workers, how many communication steps are needed to complete
Tree-all-reduce?

(b) (5 points) At the i-th communication step in Phase I, worker n sends a message to worker n’. Write

n' as a function of ¢ and n.

(¢) (10 points) Implement Tree-all-reduce in the notebook.

Step 2: Ring-all-reduce (20 points)

The Ring-all-Reduce is a two-phase process, where the data flow follows a ring topology, i.e., each worker
sends data to its neighbor and receives data from its other neighbor.

Phase I: Scatter-reduce. Similar to Tree-all-Reduce, Phase I of Ring-all-Reduce aims to reduce the
data. However, Ring-all-Reduce divides the data z, into N chunks (assume the size of x,, is divisible
by N), where N is the number of workers (i.e., world_size). The goal of this phase is for each worker to
end up with the final reduced data for one specific chunk. Figure 2 illustrates the process of Phase I in a
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Figure 2: Phase I of Ring-all-reduce: Scatter-Reduce.

system with 4 workers. At the first communication step, worker n sends its ((n — 1) mod N)-th chunk to
its left neighbor (n — 1) mod N and receives a chunk from its right neighbor (n + 1) mod N. The received
chunk is then added to the corresponding local chunk. At the second step, worker n sends its next chunk
to its left neighbor. This send-receive-reduce process is repeated N — 1 times. Ultimately, each worker has
accumulated the sum of one specific chunk from all other processes, and that chunk’s value is now its final,
reduced value.
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Figure 3: Phase II of Ring-all-reduce: All-Gather.

Phase IT: All-Gather. As the upper-left sub-figure in Figure 3 shows, the n-th worker has its (n+2) mod N
chunk reduced after Phase I. The goal of Phase II is for each worker to share their final, reduced chunk with all
the other workers, so that every worker has a complete copy of the final, reduced data. The communication
pattern in Phase II is the same as in Phase I. Each worker sends its newly finalized chunk (the one it reduced



in Phase I) to its left neighbor and receives a chunk from its right neighbor. The received chunk is placed into
the correct position in the local tensor. This process is repeated N — 1 times, with each worker forwarding
the chunks it receives around the ring. Ultimately, every worker has received and collected all the other
N — 1 reduced chunks.

Requirements: Answer the following questions or finish the functions in the notebook:

(a) (5 points) At the i-th step, the c-th data chunk at the n-th worker is sent to its left neighbor. Write ¢
as a function of ¢ and n.

(b) (15 points) Implement Ring-all-reduce in the notebook.

Step 3: Comparison of complexity (10 points)

Let the latency in the communication between two workers be ¢; and the bandwidth be b; the data size be
D. Consider a distributed system with N workers. Answer the following questions in the notebook:

(a) (2 points) How much time does it take to send data of size D from one worker to another?

(b) (2 points) How much time does it take to complete a Tree-all-reduce?
(¢) (2 points) How much time does it take to complete a Ring-all-reduce?
)

(d) (4 points) Discuss when we should use Tree-all-reduce and when we should use Ring-all-reduce.

Task 3: Distributed training (35 points)

In this task, you will combine the concepts from the previous tasks. After performing a forward pass and
backward pass on the LeNet-5 model (see Homework 3) in each worker, you need to aggregate the gradients
across all workers. You are allowed to use all-reduce function provided by Pytorch Distributed library.

Algorithm 1 Distributed SGD

Require: step size «; initialization x
1: for all k=0,1,2,--- K do

0

2 for all workers n =1,2,--- , N do
3 Compute stochastic gradient G* using local dataset
1
4 Compute xﬁ+2 =2k —aGF
1
5: Run all-reduce sub-program and divide the result by N, yielding z**! = ﬁ Zf:;l xﬁ+2
6 end for
7: end for

Step 1: Distributed SGD (20 points)

Algorithm 1 outlines a process for Distributed Stochastic Gradient Descent (Distributed SGD) de-
signed to train a model across multiple workers. The method involves two main loops: an outer loop iterating
through training iterations k = 1,2, --- , K, and an inner loop where all workers (n = 1,2,..., N) participate
in parallel. In each training iteration, every worker independently computes a stochastic gradient G¥ using

1
its own local dataset. Following this, each worker updates its local model from z* to ;L"ff 2 using the step size



a and its local gradient. The key to the distributed approach lies in the subsequent step, where all workers
collectively run an all-reduce sub-program. This operation aggregates the updated parameters from all N
workers, computes their average, and distributes the final averaged parameters z**1 back to every worker.
This synchronization ensures that all workers are aligned with a consistent model state before proceeding to
the next training step.

Requirements: Read and understand the provided framework and complete the rest.

Step 2: Validating the speedup (15 points)
Requirements: Answer the following questions.

(a) (10 points) Let k*(IV) be the iterations that Distributed SGD with N workers reaches the 97% ac-
curacy on test set. The speedup of the system with N workers is defined as k*(1)/k*(IN). Set the
world-size as 1, 2, 4, 8, and run Distributed SGD. Compute the speedup.

(b) (5 points) Ideally, a well-scalable distributed system enables the speedup to increase linearly as more
devices are deployed, i.e., k*(1)/k*(N) = N. Does Distributed SGD achieve linear speedup? If not,
speculate what the bottleneck is.



