
[Fall 2025] ECE 5290/7290 and ORIE 5290
Distributed Optimization for Machine Learning and AI

Homework 4

Gradescope Due: November 14th at 5PM

Objective of This Assignment

The objective of this assignment is to gain a foundational understanding of the key concepts, practical

implementation of distributed learning, and how it can accelerate the training. You will begin by learning

the crucial concepts and implementing your first distributed program to get your feet wet. Based on that, you

will implement one of the central operations in distributed learning all-reduce and compare the complexity

of different implementations. Finally, you will be guided to implement your distributed training algorithm.

We will provide a starter code framework on the CANVAS course website in the format of

Python notebooks. There are two kinds of questions:

Q1 Programming: Even though the framework is offered, key functions in the notebook are left blank

with a placeholder raise NotImplementedError. You are responsible for completing the functions.

Remove the placeholder after you complete them.

Q2 Question: You are responsible for answering the questions posed in the notebook.

Note: There is no autograder for this project, since you can verify that your code outputs the correct thing

by just comparing it to the baseline methods provided. Grading will be performed based on your lab report

and on manual inspection of your code. Furthermore, the experiments in this project can take some time

to complete. On my computer, they take about 15 minutes to run in total (across all experiments). Please

ensure you leave enough time to complete the experimental exploration.

Task 0: Setup the environment (0%)

The first task will guide you to get your environment ready. In this homework, only PyTorch package is

required. If you have already had a proper environment, you could skip this part. Note: Do not use the

package except PyTorch.

The starter code is provided in the format of Python notebook (ipynb). You could run the notebook on

various platforms, like Jupyter Notebook, Google Colab, and VS Code. We suggest using Conda package

manager to set up the environment. Run conda env create -f environment-cpu.yml to create a virtual

environment and use conda activate ECE5290-HW3-cpu to activate it.

Task 1: Distributed operations (15 points)

You will utilize the PyTorch Distributed library, which comprises a collection of parallelism modules, a

communication layer, and infrastructure for launching and debugging large-scale training jobs. The library

1



can use either a CPU or GPU backend, depending on your hardware and configuration. If you have a server

with multiple GPUs, you could use NCCL as the backend; otherwise, you could use Gloo as the backend.

In the homework, only the CPU is required. Refer to the official PyTorch Distributed Documentation for

guidance.

Step 1: Distributed “Hello World” (5 points)

The first step of Task 1 is to get familiar with the concept of distributed computing. Additionally, you need

to let each worker say hello to you, which ensures you have a correct distributed environment.

In distributed computing, two fundamental concepts are world size and rank, which provide the necessary

context for managing data, synchronizing model updates, and orchestrating the entire distributed training

workflow. World size refers to the total number of processes participating in a distributed computing job.

This is the global count of all workers, which could be across multiple machines or multiple GPUs on a

single machine. Rank, on the other hand, is the unique identifier assigned to each individual process within

the distributed group. Each process has a distinct rank ranging from 0 to world size - 1. This unique

identifier is crucial for coordinating communication and ensuring that each process knows its specific role in

the training task, such as which partition of data or which subset of a model it is responsible for.

The entry of a distributed program is something like spawn(func), where spawn functions generate a series

of workers and func. In this task, you will define different func according to different requirements. As the

first step, you need to define a func to let workers say hello to you.

Requirements: Let each worker print its rank and your name. For example, if you are Alice, your output

should be like

Rank 1 : Hel lo , A l i c e !
Rank 2 : Hel lo , A l i c e !
Rank 3 : Hel lo , A l i c e !
Rank 4 : Hel lo , A l i c e !

Step 2: Communication among workers (10 points)

In the second step, you will get familiar with the primitives send and recv functions, which enable point-

to-point communication between two workers.

Requirements: You will need to read their documents and answer some questions posed in the notebook.

Furthermore, you need to implement a code that allows workers to send messages to others.

Task 2: All-reduction operation (50 points)

In this task, you will implement a key collective communication operation, all-reduce, using only the prim-

itive send and recv functions. Your implementation should not rely on any other collective communication

functions. Let xn be a tensor on worker n, the result of all-reduce is that all workers have a copy of∑N−1
n=0 xn. As we will see in Task 3, distributed SGD involves all-reduce at each iteration. Therefore,

all-reduce plays a critical role in the training. You will compare the efficiency of two major methods to

implement all-reduce.

2

https://docs.pytorch.org/docs/stable/distributed.html


Step 1: Tree-all-reduce (20 points)

In the first step, you will be guided to implement the Tree-all-reduce algorithm, which operates in two

distinct phases to achieve a global reduction across all processes. In each phase, the data flow follows a

binary tree communication pattern.

Figure 1: Data flow of Tree-all-reduce for four pro-
cesses (P1, P2, P3, P4) across two distinct phases.

Phase I: Reduce-to-Root. Phase I aims to re-

duce the data to one specific worker. In this phase,

data flows from the leaves of the tree up to the root.

In the example in Figure 1, the first row shows the

initial state, with four independent workers (P1, P2,

P3, P4) at a leaf node that start with their local data

xn. In each communication step, a worker n sends

its current data xn to its parent node n′. The par-

ent node receives data from its children, performs

the reduction operation (e.g., summation), and com-

bines the received data with its own local value, i.e.,

xn′ ← xn′ + xn. In the example, the leaves of the

tree (P2 and P4) send their data to their respec-

tive parents (P1 and P3). P1 receives data from P2,

and P3 receives data from P4. This process repeats,

with intermediate nodes sending their partially re-

duced values further up the tree, until the root node

has received and processed data from all its children, at which point it holds the final, globally reduced value.

In our example, the root worker, P1, holds the final, globally reduced result from all four processes.

Phase II: Broadcast-from-Root: The second phase ensures all workers have a copy of the final reduced

result. In this phase, the final reduced value, now residing at the root (P1), is broadcast down the tree to

all other workers. The root sends the result to its children. Each child, upon receiving the value, then sends

it to its own children, and so on. This process continues until the result is disseminated to every worker.

Requirements: Answer the following questions or finish the functions in the notebook:

(a) (5 points) Given a system with N workers, how many communication steps are needed to complete

Tree-all-reduce?

(b) (5 points) At the i-th communication step in Phase I, worker n sends a message to worker n′. Write

n′ as a function of i and n.

(c) (10 points) Implement Tree-all-reduce in the notebook.

Step 2: Ring-all-reduce (20 points)

The Ring-all-Reduce is a two-phase process, where the data flow follows a ring topology, i.e., each worker

sends data to its neighbor and receives data from its other neighbor.

Phase I: Scatter-reduce. Similar to Tree-all-Reduce, Phase I of Ring-all-Reduce aims to reduce the

data. However, Ring-all-Reduce divides the data xn into N chunks (assume the size of xn is divisible

by N), where N is the number of workers (i.e., world_size). The goal of this phase is for each worker to

end up with the final reduced data for one specific chunk. Figure 2 illustrates the process of Phase I in a

3



Step 1 Step 2

Step 3 Step 4

Figure 2: Phase I of Ring-all-reduce: Scatter-Reduce.

system with 4 workers. At the first communication step, worker n sends its ((n − 1) mod N)-th chunk to

its left neighbor (n − 1) mod N and receives a chunk from its right neighbor (n + 1) mod N . The received

chunk is then added to the corresponding local chunk. At the second step, worker n sends its next chunk

to its left neighbor. This send-receive-reduce process is repeated N − 1 times. Ultimately, each worker has

accumulated the sum of one specific chunk from all other processes, and that chunk’s value is now its final,

reduced value.

After scatter-reduce Step 1

Step 2 Step 3

Figure 3: Phase II of Ring-all-reduce: All-Gather.

Phase II: All-Gather. As the upper-left sub-figure in Figure 3 shows, the n-th worker has its (n+2) mod N

chunk reduced after Phase I. The goal of Phase II is for each worker to share their final, reduced chunk with all

the other workers, so that every worker has a complete copy of the final, reduced data. The communication

pattern in Phase II is the same as in Phase I. Each worker sends its newly finalized chunk (the one it reduced

4



in Phase I) to its left neighbor and receives a chunk from its right neighbor. The received chunk is placed into

the correct position in the local tensor. This process is repeated N − 1 times, with each worker forwarding

the chunks it receives around the ring. Ultimately, every worker has received and collected all the other

N − 1 reduced chunks.

Requirements: Answer the following questions or finish the functions in the notebook:

(a) (5 points) At the i-th step, the c-th data chunk at the n-th worker is sent to its left neighbor. Write c

as a function of i and n.

(b) (15 points) Implement Ring-all-reduce in the notebook.

Step 3: Comparison of complexity (10 points)

Let the latency in the communication between two workers be t; and the bandwidth be b; the data size be

D. Consider a distributed system with N workers. Answer the following questions in the notebook:

(a) (2 points) How much time does it take to send data of size D from one worker to another?

(b) (2 points) How much time does it take to complete a Tree-all-reduce?

(c) (2 points) How much time does it take to complete a Ring-all-reduce?

(d) (4 points) Discuss when we should use Tree-all-reduce and when we should use Ring-all-reduce.

Task 3: Distributed training (35 points)

In this task, you will combine the concepts from the previous tasks. After performing a forward pass and

backward pass on the LeNet-5 model (see Homework 3) in each worker, you need to aggregate the gradients

across all workers. You are allowed to use all-reduce function provided by Pytorch Distributed library.

Algorithm 1 Distributed SGD

Require: step size α; initialization x0

1: for all k = 0, 1, 2, · · · ,K do
2: for all workers n = 1, 2, · · · , N do
3: Compute stochastic gradient Gk

n using local dataset

4: Compute x
k+ 1

2
n = xk − αGk

n

5: Run all-reduce sub-program and divide the result by N , yielding xk+1 = 1
N

∑N
n=1 x

k+ 1
2

n

6: end for
7: end for

Step 1: Distributed SGD (20 points)

Algorithm 1 outlines a process for Distributed Stochastic Gradient Descent (Distributed SGD) de-

signed to train a model across multiple workers. The method involves two main loops: an outer loop iterating

through training iterations k = 1, 2, · · · ,K, and an inner loop where all workers (n = 1, 2, . . . , N) participate

in parallel. In each training iteration, every worker independently computes a stochastic gradient Gk
n using

its own local dataset. Following this, each worker updates its local model from xk to x
k+ 1

2
n using the step size

5



α and its local gradient. The key to the distributed approach lies in the subsequent step, where all workers

collectively run an all-reduce sub-program. This operation aggregates the updated parameters from all N

workers, computes their average, and distributes the final averaged parameters xk+1 back to every worker.

This synchronization ensures that all workers are aligned with a consistent model state before proceeding to

the next training step.

Requirements: Read and understand the provided framework and complete the rest.

Step 2: Validating the speedup (15 points)

Requirements: Answer the following questions.

(a) (10 points) Let k∗(N) be the iterations that Distributed SGD with N workers reaches the 97% ac-

curacy on test set. The speedup of the system with N workers is defined as k∗(1)/k∗(N). Set the

world-size as 1, 2, 4, 8, and run Distributed SGD. Compute the speedup.

(b) (5 points) Ideally, a well-scalable distributed system enables the speedup to increase linearly as more

devices are deployed, i.e., k∗(1)/k∗(N) = N . Does Distributed SGD achieve linear speedup? If not,

speculate what the bottleneck is.

6


