
[Fall 2025] ECE 5290/7290 and ORIE 5290
Distributed Optimization for Machine Learning and AI

Homework 3

Gradescope Due: October 20th at 11:59PM

Objective of This Assignment

The goal of this assignment is to deepen your understanding of distributed optimization methods used in

machine learning. You will analyze the convergence of consensus averaging (synchronous and gossip), un-

derstand how spectral properties control rates, compare mini-batch and parallel SGD, and study communi-

cation–computation trade-offs in local SGD. A coding problem will help you visualize convergence behaviors

and the impact of network topology.

Instruction of Homework Submission

This assignment includes both an analytical part and a coding part (Problem 5). We will use Gradescope

to check the correctness of your code. Therefore, you will see two separate assignments on Gradescope.

(a) A starter .py file is provided for Problem 5. Do not change the function names, signatures, or filename.

(b) Upload the written PDF to Homework 3 and the code to Homework 3 Coding.

Question 1: Consensus Averaging and Spectral Gap (20 points)

Let x(0) ∈ RN be scalar values held by N nodes on an undirected connected graph G = (V, E). The

synchronous (Jacobi) consensus update is

x(t+ 1) = Wx(t), W = I− αL,

where L is the graph Laplacian matrix and 0 < α < 1/λmax(L); x̄ = 1
N 1⊤x(0) is the global average that the

algorithm wants to achieve the consensus on. Define the consensus error as z(t) = x(t)− x̄1.

(a) (5 points) Show that 1 is an eigenvector of W with eigenvalue 1; further, W is symmetric and doubly

stochastic for the chosen α.

(1 Point) L1 = 0 implies W1 = (I− αL)1 = 1.

(2 Point) Since L is symmetric, so is W.

(2 Point) Row sums: W1 = 1. Symmetry ⇒ column sums also 1 (doubly stochastic).

(b) (5 points) Let 1 = λ1(W) ≥ λ2(W) ≥ · · · ≥ λN (W) > −1. Prove the following

∥z(t)∥2 ≤
∣∣λ2(W)

∣∣ t ∥z(0)∥2.
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(3 Points) Decompose z(0) in W as orthonormal eigenbasis {ui} with u1 = 1√
N
1. Notice that

⟨z(0),u1⟩ = 0.

(2 Points) Therefore, we have z(t) =
∑N

i=2 λ
t
i⟨z(0),ui⟩ui, so ∥z(t)∥2 ≤ maxi≥2 |λi|t∥z(0)∥2.

(c) (10 points) Consider three graphs with N nodes and W = I− αL:

– Path graph PN with α = 1/∆ (max degree ∆ = 2).

– Ring graph CN with α = 1/∆ (max degree ∆ = 2).

– Complete graph KN with α = 1/N .

Recall λ2(L) for each graph from class and give a clean upper bound on |λ2(W)| = |1 − αλ2(L)|.
Which graph mixes fastest?

Path graph PN .
Ring Graph - CN Complete Graph - CN

(2 Points) Known spectra: L(PN ) has λ2 ≍ c/N2; L(CN ) has λ2 = 2(1 − cos(2π/N)) ≍ c′/N2;
L(KN ) has λ2 = N .

(3 Points) Then |λ2(W)| = |1 − αλ2(L)|. With α = 1/2 for path/ring, |λ2(W)| ≈ 1 − c/N2;
with α = 1/N on complete graph, |λ2(W)| = |1 − (1/N) ·N | = 0 for the second eigenvalue, hence
one-step consensus in the idealized model. Thus KN mixes fastest, then CN ∼ PN (both O(N2) time
to accuracy).

Question 2: Randomized Gossip (Pairwise Averaging) (20 points)

At each step t, pick an edge (i, j) ∈ E uniformly at random; the two endpoints average their values:

xi(t+1) = xj(t+1) = 1
2

(
xi(t) + xj(t)

)
, xℓ(t+1) = xℓ(t) for ℓ /∈ {i, j}.

Define the disagreement potential V (t) =
∑N

m=1

(
xm(t)− x̄

)2
with x̄ = 1

N 1⊤x(0) as the global average.

(a) (8 points) Show that V (t) is nonincreasing and derive

E
[
V (t+1) | x(t)

]
= V (t)− 1

2|E|
∑

(i,j)∈E

(
xi(t)− xj(t)

)2
.
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Only the selected pair (i, j) changes. One checks V (t+1)−V (t) = − 1
2

(
xi−xj

)2
. Taking expectation

over the uniform edge choice yields the identity.

(b) (6 points) Use
∑

(i,j)∈E(xi − xj)
2 = x⊤Lx ≥ λ2(L)∥x− x̄1∥2 = λ2(L)V to prove

E
[
V (t+1) | x(t)

]
≤

(
1− λ2(L)

2|E|

)
V (t).

Combine part (a) with the spectral lower bound to get the linear contraction in conditional expectation.

(c) (6 points) For the complete graph with uniform edge sampling, show

E
[
V (t)

]
≤

(
1− 1

N

)t
V (0).

(Hint: λ2(LKN
) = N and |E| = N(N−1)

2 .)

Plug λ2(L) = N and |E| = N(N−1)
2 into part (b): 1 − λ2

2|E| = 1 − N
N(N−1) = 1 − 1

N−1 ≤ 1 − 1
N ,

yielding the stated bound (or the slightly sharper 1− 1
N−1 ).

Question 3: Mini-batch vs. Parallel SGD (15 points)

Consider empirical risk F (x) = 1
N

∑N
i=1 fi(x). Let K workers each draw independent mini-batches of size

B (with replacement). Two commonly used yet alternative updates at iteration t:

1) (Option 1: Single-node mini-batch) One node samples a single mini-batch B of size KB:

g(x(t)) =
1

KB

∑
i∈B

∇fi(x(t)), update x(t+ 1) = x(t)− η g(x(t)).

2) (Option 2: Parallel averaging) Each worker computes g(k)(x(t)) = 1
B

∑
i∈Bk

∇fi(x(t)), then aver-

age:

ḡ(x(t)) =
1

K

K∑
k=1

g(k)(x(t)) update x(t+ 1) = x(t)− η ḡ(x(t)).

(a) (5 points) Show both estimators in Option 1 and Option 2 are unbiased for ∇F (x(t)).

By linearity of expectation and i.i.d. sampling with replacement, E[g(k)] = ∇F , so E[ḡ] = ∇F .
Similarly E[g] = ∇F .

(b) (5 points) Assuming the per-sample gradient variance is bounded by E∥∇fi(x) − ∇F (x)∥2 ≤ σ2,

prove

Var(ḡ) =
σ2

KB
, Var(g) =

σ2

KB
.
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Independence across workers and across samples yields variance additivity: each worker has variance
σ2/B, averaging K i.i.d. workers gives σ2/(KB). The single-node KB-batch has the same variance
reduction.

(c) (5 points) Discuss when parallel averaging and single-node mini-batch are not equivalent in practice.

They differ under: (i) communication latency/stragglers (parallel cost per step), (ii) data heterogeneity
across workers (breaks identical sampling), (iii) asynchronous implementations (stale gradients), and
(iv) systems constraints (bandwidth, memory layout).

Question 4: Local SGD - Communication/Computation Trade-offs (25 points)

Consider K workers collaboratively minimizing a global objective

F (x) =
1

K

K∑
k=1

Fk(x) with Fk(x) =
1

B

∑
i∈Bk

fi(x),

where worker k has access to local data and computes stochastic gradients g(k). Each worker starts from a

common model x(t), performs τ local SGD steps (with x
(k)
0 (t) = x(t)):

x
(k)
s+1(t) = x(k)

s (t)− η g(k)s (t), s = 0, 1, . . . , τ − 1,

and then all workers synchronize by averaging:

x(t+ 1) =
1

K

K∑
k=1

x(k)
τ (t).

Assume that each local function Fk is µ-strongly convex and L-smooth, and that the stochastic gradients

have bounded variance σ2.

(a) (15 points) For ECE 7290 students: (Sketch) Show that compared to fully synchronized mini-

batch SGD (from Question 3), local SGD includes an additional drift term due to model divergence

between averaging rounds. Derive a bound of the form (η2 in the initial version should be η)

E∥x(t+ 1)− x⋆∥2 ≤ ρτ E∥x(t)− x⋆∥2 + C1
ησ2

µK
+ C2 ητΓ

2,

where Γ2 captures the gradient dissimilarity (data heterogeneity) across nodes. Explain the dependence

on τ . For homogeneous data (Γ2 ≈ 0), what τ do you recommend? For heterogeneous data (large Γ2),

how would you adjust τ?

The first term is geometric contraction under strong convexity. The second is the steady-state noise
floor, reduced by K. The third arises from drift: local iterates deviate across nodes by O(ητ), and
heterogeneity scales this to a bias O(η2τΓ2). Larger τ reduces communication but increases drift.

Assumption 1 (Heterogeneity) There exists Γ2 ≥ 0 such that for all x,

1

K

K∑
k=1

∥∥∇Fk(x)−∇F (x)
∥∥2 ≤ Γ2, F (x) =

1

K

K∑
k=1

Fk(x).
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Define the per-step average iterate and the decomposition terms

x̄s(t) :=
1

K

K∑
k=1

x(k)
s (t), ζs(t) :=

1

K

K∑
k=1

(
g(k)s (t)−∇Fk(x

(k)
s (t))

)
,

∆s(t) :=
1

K

K∑
k=1

(
∇Fk(x

(k)
s (t))−∇Fk(x̄s(t))

)
.

Then the averaged update is

x̄s+1(t) = x̄s(t)− η
(
∇F (x̄s(t)) + ∆s(t) + ζs(t)

)
.

Lemma 1 (One-step recursion of averaged iterate) If η ≤ 1/L, then for all s,

E
∥∥x̄s+1(t)− x⋆

∥∥2 ≤ (1− ηµ)E
∥∥x̄s(t)− x⋆

∥∥2 + η2 E
∥∥ζs(t)∥∥2 +

(
η2 + η

µ

)
E
∥∥∆s(t)

∥∥2. (1)

Let es(t) := x̄s(t)− x⋆. From the averaged update,

es+1 = es − η
(
∇F (x̄s) + ∆s + ζs

)
.

Expand, condition on Fs, and use E[ζs | Fs] = 0 to remove mixed terms with ζs:

E
[
∥es+1∥2 | Fs

]
=

∥∥es − η∇F (x̄s)
∥∥2 + η2∥∆s∥2 + η2E

[
∥ζs∥2 | Fs

]
+ 2η

〈
es − η∇F (x̄s),−∆s

〉
.

Upper bound the inner product by Young’s inequality with parameter µ > 0:

2η
〈
es − η∇F (x̄s),−∆s

〉
≤ ηµ

∥∥es − η∇F (x̄s)
∥∥2 + η

µ
∥∆s∥2.

Hence

E
[
∥es+1∥2 | Fs

]
≤

(
1 + ηµ

) ∥∥es − η∇F (x̄s)
∥∥2 + (

η2 +
η

µ

)
∥∆s∥2 + η2E

[
∥ζs∥2 | Fs

]
.

Using the standard GD contraction for µ–strongly convex, L–smooth F with η ≤ 1/L,∥∥es − η∇F (x̄s)
∥∥2 ≤ (1− ηµ) ∥es∥2,

we obtain

E
[
∥es+1∥2 | Fs

]
≤ (1 + ηµ)(1− ηµ)︸ ︷︷ ︸

≤ 1−ηµ for ηµ≤1/2

∥es∥2 +
(
η2 +

η

µ

)
∥∆s∥2 + η2E

[
∥ζs∥2 | Fs

]
.

Taking the total expectation yields (1).

Lemma 2 (2nd moment of noise + drift) With L-smooth, µ-strongly convex and Assumption 1,

E
∥∥∆s(t) + ζs(t)

∥∥2 ≤ 2L2 Ds(t) + 2Γ2 +
2σ2

K
, Ds(t) :=

1

K

K∑
k=1

E
∥∥x(k)

s (t)− x̄s(t)
∥∥2. (2)
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Sketch. By (a+b)2 ≤ 2a2 + 2b2 and the variance bound on ζs, E∥ζs∥2 ≤ σ2/K. Split ∆s = As +Bs

with

As :=
1

K

∑
k

(
∇Fk(x

(k)
s )−∇Fk(x̄s)

)
, Bs :=

1

K

∑
k

(
∇Fk(x̄s)−∇F (x̄s)

)
.

L-smoothness gives ∥As∥ ≤ L
K

∑
k ∥x

(k)
s − x̄s∥ and hence E∥As∥2 ≤ L2Ds. Assumption 1 gives

E∥Bs∥2 ≤ Γ2. Combine the three bounds.

Lemma 3 (Disagreement growth within a round) Starting from x
(k)
0 = x̄0,

Ds(t) ≤ c0 η
2 s

(
Γ2 + σ2

)
, s = 0, 1, . . . , τ − 1,

for some absolute constant c0 > 0 independent of η, τ,K,Γ, σ.

Sketch. Subtract the averaged update from each local update and unroll:

x
(k)
s+1 − x̄s+1 = (x(k)

s − x̄s)− η
(
∇Fk(x

(k)
s )−∇F (x̄s)

)
− η

(
g(k)s −∇Fk(x

(k)
s )

)
+ η ζs.

Use L-smoothness, the heterogeneity bound, and variance bounds; then take expectations to obtain
linear growth in s with factor η2(Γ2 + σ2).

Therefore, let η ≤ 1/L and define ρ := 1− ηµ ∈ (0, 1]. After τ local steps and averaging,

E
∥∥x(t+1)−x⋆

∥∥2 = E
∥∥x̄τ (t)−x⋆

∥∥2 ≤ ρτ E
∥∥x(t)−x⋆

∥∥2 + C1
η σ2

µK
+ C2

(
η2+ η

µ

)
τ Γ2 + O(η3)

for absolute constants C1, C2 depending only on (µ,L, c0).

Interpretation.

– The contraction term ρτ improves with more local steps τ .

– Mini-batch noise scales as ησ2

µK .

– The heterogeneity drift enters as a second moment, hence appears with η. Summing across τ
steps yields the characteristic ητΓ2 term (up to constants).

Tuning τ . With homogeneous data (Γ2 ≈ 0), choosing a larger τ saves communication (the drift is
negligible). With heterogeneous data (large Γ2), keep τ modest so the ητΓ2 drift does not dominate.

(b) (15 points) For ECE/ORIE 5290 students: Assuming (a) holds, for homogeneous data (Γ2 ≈ 0),

what τ do you recommend? For heterogeneous data (large Γ2), how would you adjust τ?

Homogeneous: can use larger τ (cheap communication, minimal drift). Heterogeneous: smaller τ to
control drift; potentially adaptive τ based on measured disagreement.

(c) (10 points) Suppose the total training time is limited. Each local iteration costs ccomp time units

for computation, and each synchronization costs ccomm. Qualitatively describe how to choose (η, τ) to

balance runtime efficiency and convergence accuracy.
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If communication is much more expensive than computation (ccomm ≫ ccomp) and the data are
homogeneous, it is preferable to choose a large τ to save time by communicating less frequently.
However, if data heterogeneity is significant, a smaller τ should be chosen to reduce drift. The learning
rate η should start near 1/L and be reduced gradually to avoid amplifying the η2τΓ2 term. A practical
heuristic is to grid search over τ ∈ {1, 2, 4, 8, . . . } and select the pair (η, τ) that yields the best
validation loss under the fixed wall-clock budget.

Question 5: Coding - Consensus and parallel SGD (20 points)

You will implement two small simulations.

(A) Consensus vs. Gossip (10 points) Generate N = 20 i.i.d. initial values in [0, 1]. Consider:

• Synchronous consensus x(t+1) = Wx(t) on a ring with α = 1/2.

• Randomized gossip: pick a random edge (i, j) on the ring and average the pair.

Plot 1: the disagreement V (t) =
∑

i(xi(t)− x̄)2 vs. iterations for both methods (same random seed).

Plot 2: sample trajectories of two nodes to illustrate smoothing.

(B) Local vs. Parallel SGD (10 points) Binary logistic regression on a synthetic dataset, split evenly

across K = 4 workers. Compare:

• Parallel (synchronous) mini-batch SGD with global batch size KB.

• Local SGD with the same local batch size B and averaging period τ ∈ {1, 5, 20}.

Plot 3: training loss F (x) = 1
K

∑K
k=1 Fk(x) vs. # of communication rounds. Short analysis (3–5 sen-

tences): discuss the effect of τ on speed/accuracy and when local SGD matches parallel SGD.

Expected outcome: The synchronous average consensus converges faster per iteration than gossip; both are
linear in expectation with rates set by spectral gap. For SGD, local SGD with small τ and homogeneous data
closely matches parallel SGD in #communication rounds; large τ saves communication but may underperform
if data shards are heterogeneous.
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