
[Fall 2025] ECE 5290/7290 and ORIE 5290
Distributed Optimization for Machine Learning and AI

Homework 3

Gradescope Due: October 20th at 11:59PM

Objective of This Assignment

The goal of this assignment is to deepen your understanding of distributed optimization methods used in

machine learning. You will analyze the convergence of consensus averaging (synchronous and gossip), un-

derstand how spectral properties control rates, compare mini-batch and parallel SGD, and study communi-

cation–computation trade-offs in local SGD. A coding problem will help you visualize convergence behaviors

and the impact of network topology.

Instruction of Homework Submission

This assignment includes both an analytical part and a coding part (Problem 5). We will use Gradescope

to check the correctness of your code. Therefore, you will see two separate assignments on Gradescope.

(a) A starter .py file is provided for Problem 5. Do not change the function names, signatures, or filename.

(b) Upload the written PDF to Homework 3 and the code to Homework 3 Coding.

Question 1: Consensus Averaging and Spectral Gap (20 points)

Let x(0) ∈ RN be scalar values held by N nodes on an undirected connected graph G = (V, E). The

synchronous (Jacobi) consensus update is

x(t+ 1) = Wx(t), W = I− αL,

where L is the graph Laplacian matrix and 0 < α < 1/λmax(L); x̄ = 1
N 1⊤x(0) is the global average that the

algorithm wants to achieve the consensus on. Define the consensus error as z(t) = x(t)− x̄1.

(a) (5 points) Show that 1 is an eigenvector of W with eigenvalue 1; further, W is symmetric and doubly

stochastic for the chosen α.
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(b) (5 points) Let 1 = λ1(W) ≥ λ2(W) ≥ · · · ≥ λN (W) > −1. Prove the following

∥z(t)∥2 ≤
∣∣λ2(W)

∣∣ t ∥z(0)∥2.

(c) (10 points) Consider three graphs with N nodes and W = I− αL:

– Path graph PN with α = 1/∆ (max degree ∆ = 2).

– Ring graph CN with α = 1/∆ (max degree ∆ = 2).

– Complete graph KN with α = 1/N .

Recall λ2(L) for each graph from class and give a clean upper bound on |λ2(W)| = |1 − αλ2(L)|.
Which graph mixes fastest?

Path graph PN .
Ring Graph - CN Complete Graph - CN
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Question 2: Randomized Gossip (Pairwise Averaging) (20 points)

At each step t, pick an edge (i, j) ∈ E uniformly at random; the two endpoints average their values:

xi(t+1) = xj(t+1) = 1
2

(
xi(t) + xj(t)

)
, xℓ(t+1) = xℓ(t) for ℓ /∈ {i, j}.

Define the disagreement potential V (t) =
∑N

m=1

(
xm(t)− x̄

)2
with x̄ = 1

N 1⊤x(0) as the global average.

(a) (8 points) Show that V (t) is nonincreasing and derive

E
[
V (t+1) | x(t)

]
= V (t)− 1

2|E|
∑

(i,j)∈E

(
xi(t)− xj(t)

)2
.

(b) (6 points) Use
∑

(i,j)∈E(xi − xj)
2 = x⊤Lx ≥ λ2(L)∥x− x̄1∥2 = λ2(L)V to prove

E
[
V (t+1) | x(t)

]
≤

(
1− λ2(L)

2|E|

)
V (t).
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(c) (6 points) For the complete graph with uniform edge sampling, show

E
[
V (t)

]
≤

(
1− 1

N

)t
V (0).

(Hint: λ2(LKN
) = N and |E| = N(N−1)

2 .)

Question 3: Mini-batch vs. Parallel SGD (15 points)

Consider empirical risk F (x) = 1
N

∑N
i=1 fi(x). Let K workers each draw independent mini-batches of size B

(with replacement). Two commonly used yet alternative updates at iteration t:

1) (Option 1: Single-node mini-batch) One node samples a single mini-batch B of size KB:

g(x(t)) =
1

KB

∑
i∈B

∇fi(x(t)), update x(t+ 1) = x(t)− η g(x(t)).

2) (Option 2: Parallel averaging) Each worker computes g(k)(x(t)) = 1
B

∑
i∈Bk

∇fi(x(t)), then aver-

age:

ḡ(x(t)) =
1

K

K∑
k=1

g(k)(x(t)) update x(t+ 1) = x(t)− η ḡ(x(t)).

(a) (5 points) Show both estimators in Option 1 and Option 2 are unbiased for ∇F (x(t)).
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(b) (5 points) Assuming the per-sample gradient variance is bounded by E∥∇fi(x) − ∇F (x)∥2 ≤ σ2,

prove

Var(ḡ) =
σ2

KB
, Var(g) =

σ2

KB
.

(c) (5 points) Discuss when parallel averaging and single-node mini-batch are not equivalent in practice.

Question 4: Local SGD - Communication/Computation Trade-offs (25 points)

Consider K workers collaboratively minimizing a global objective

F (x) =
1

K

K∑
k=1

Fk(x) with Fk(x) =
1

B

∑
i∈Bk

fi(x),
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where worker k has access to local data and computes stochastic gradients g(k). Each worker starts from a

common model x(t), performs τ local SGD steps (with x
(k)
0 (t) = x(t)):

x
(k)
s+1(t) = x(k)

s (t)− η g(k)s (t), s = 0, 1, . . . , τ − 1,

and then all workers synchronize by averaging:

x(t+ 1) =
1

K

K∑
k=1

x(k)
τ (t).

Assume that each local function Fk is µ-strongly convex and L-smooth, and that the stochastic gradients

have bounded variance σ2.

(a) (15 points) For ECE 7290 students: (Sketch) Show that compared to fully synchronized mini-

batch SGD (from Question 3), local SGD includes an additional drift term due to model divergence

between averaging rounds. Derive a bound of the form

E∥x(t+ 1)− x⋆∥2 ≤ ρτ E∥x(t)− x⋆∥2 + C1
ησ2

µK
+ C2 η

2τΓ2,

where Γ2 captures the gradient dissimilarity (data heterogeneity) across nodes. Explain the dependence

on τ . For homogeneous data (Γ2 ≈ 0), what τ do you recommend? For heterogeneous data (large Γ2),

how would you adjust τ?

(b) (15 points) For ECE/ORIE 5290 students: Assuming (a) holds, for homogeneous data (Γ2 ≈ 0),

what τ do you recommend? For heterogeneous data (large Γ2), how would you adjust τ?

(c) (10 points) Suppose the total training time is limited. Each local iteration costs ccomp time units

for computation, and each synchronization costs ccomm. Qualitatively describe how to choose (η, τ) to

balance runtime efficiency and convergence accuracy.
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Question 5: Coding - Consensus and parallel SGD (20 points)

You will implement two small simulations.

(A) Consensus vs. Gossip (10 points) Generate N = 20 i.i.d. initial values in [0, 1]. Consider:

• Synchronous consensus x(t+1) = Wx(t) on a ring with α = 1/2.

• Randomized gossip: pick a random edge (i, j) on the ring and average the pair.

Plot 1: the disagreement V (t) =
∑

i(xi(t)− x̄)2 vs. iterations for both methods (same random seed).

Plot 2: sample trajectories of two nodes to illustrate smoothing.

(B) Local vs. Parallel SGD (10 points) Binary logistic regression on a synthetic dataset (will be posted

by TA on Canvas), split evenly across K = 4 workers. Compare:

• Parallel (synchronous) mini-batch SGD with global batch size KB.

• Local SGD with the same local batch size B and averaging period τ ∈ {1, 5, 20}.

Plot 3: training loss F (x) = 1
K

∑K
k=1 Fk(x) vs. # of communication rounds. Short analysis (5–7 sen-

tences): discuss the effect of τ on speed/accuracy and when local SGD matches parallel SGD.
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