
[Fall 2025] ECE 5290/7290 and ORIE 5290
Distributed Optimization for Machine Learning and AI

Homework 2

Gradescope Due: September 28th at 5PM

Objective of This Assignment

The objective of this assignment is to deepen your understanding of fundamental gradient-based optimization

algorithms and their convergence properties. You will analyze the behavior of these methods on a variety

of problem classes, including ill-conditioned quadratic, constrained, and nonconvex functions. The problems

will guide you through advanced, practical topics such as the acceleration provided by momentum (the

Heavy-ball method), and the variance and trade-offs of Stochastic Gradient Descent (SGD).

Instruction of Homework Submission

This assignment includes both an analytical part and a coding part (Problem 5b). We will use Gradescope to

check the correctness of your code. Therefore, you will see two separate assignments on Gradescope. For the

analytical part, please follow the same instructions as Homework 1 and upload your work to Homework 2.

For the coding part, please read the instructions below.

(a) A starter .py file has been provided for Problem 5b. Do not change the function names, the parameters

of these functions, or the filename.

(b) When you are done, upload your completed .py file to Homework 2 Coding on Gradescope.

Question 1: The Impact of Condition Number on GD (20 points)

This problem explores the practical consequences of the condition number on the convergence of Gradient

Descent (GD). Consider the quadratic objective f(x) = 1
2x

⊤Qx.

(a) (5 points) Consider two matrices:

Q1 =

10 0

0 1

 and Q2 =

5.5 4.5

4.5 5.5


Calculate the condition number κ = λ1/λn for both Q1 and Q2. Which one is better-conditioned?

1



(2 Points) For Q1 =

10 0

0 1

 the eigenvalues are {10, 1}, so

κ(Q1) =
λmax

λmin
=

10

1
= 10.

(3 Points) For Q2 =

5.5 4.5

4.5 5.5

 The eigenvalues are also {10, 1} so κ(Q2) = 10

(b) (5 points) For both quadratic objectives defined by Q1 and Q2, write down the linear convergence

rate for GD using the optimal constant stepsize η = 2
λ1+λn

, in terms of the contraction factor ρ = κ−1
κ+1 .

The step size is 2
λ1+λn

= 2
11

(3 Points) The contraction factor ρ = 9
11 .

(2 Point) Gradient Descent then enjoys the linear rate (for either Q1 or Q2)

∥xk − x∗∥2 ≤ ρ k∥x0 − x∗∥2.

(c) (10 points) Sketch the contour plots for both functions. On each plot, sketch the expected path of

Gradient Descent starting from a point like x0 = [1, 1]⊤. Briefly explain how the different condition

numbers lead to different convergence behaviors.

Answer. For Q1, the contours of f(x) = 1
2x

⊤Q1x are axis-aligned ellipses along the x1-direction.
Starting from x0 = [1, 1]⊤, gradient descent shrinks the x2-coordinate smoothly toward zero, while the
x1-coordinate alternates in sign each step. The trajectory therefore zig-zags across the vertical axis
while contracting toward the origin.

ForQ2, the contours are ellipses rotated by 45
◦, with principal axes along [1, 1]⊤ and [1,−1]⊤. Since the

starting point x0 = [1, 1]⊤ lies exactly along the eigenvector corresponding to the larger eigenvalue, all
iterates remain on this line. Gradient descent therefore moves in a straight line along the 45◦ diagonal,
alternating in sign but shrinking in magnitude each step. Thus, while both cases share the same linear
rate ρ = 9

11 , the geometry of the contours leads to different trajectories.

Question 2: Stochastic Gradient Descent (25 points)

Consider the problem for linear regression: F (θ) = 1
N

∑N
i=1 fi(θ), where fi(θ) = 1

2 (a
⊤
i θ − yi)

2. The

stochastic gradient for a single sample it (chosen uniformly at random) is git(θ) = ∇fit(θ).

(a) (5 points) Unbiased Estimator: Show that the stochastic gradient is an unbiased estimator of the

true gradient, i.e., Eit [git(θ)] = ∇F (θ).

2



Ei

[
gi(θ)

]
=

1

N

N∑
i=1

∇fi(θ) = ∇F (θ).

Hence gi(θ) is an unbiased estimator of the true gradient.

(b) (10 points) Variance of the Stochastic Gradient: Derive an expression for the variance of the

stochastic gradient estimator, defined as σ2
θ = Eit [||git(θ)−∇F (θ)||22].

(5 Points) Using E∥X − EX∥2 = E∥X∥2 − ∥EX∥2 with X = gi(θ),

σ2
θ

def
= Ei

∥∥gi(θ)−∇F (θ)
∥∥2 =

1

N

N∑
i=1

∥gi(θ)∥2︸ ︷︷ ︸
first moment

−
∥∥∥ 1

N

N∑
i=1

gi(θ)
∥∥∥2︸ ︷︷ ︸

∥∇F (θ)∥2

.

Plugging gi(θ) = (a⊤i θ − yi)ai gives the explicit form

σ2
θ =

1

N

N∑
i=1

(a⊤i θ − yi)
2 ∥ai∥2 −

∥∥∥∥∥ 1

N

N∑
i=1

(a⊤i θ − yi) ai

∥∥∥∥∥
2

.

(Hint: You can use the identity E[||X − E[X]||2] = E[||X||2] − ||E[X]||2. Your final expression will be

in terms of the gradients of the individual component functions, ∇fi(θ)).

(c) (10 points) The Power of Mini-batching - For ECE/ORIE 5290 students: Consider a mini-

batch stochastic gradient as

gB(θ) =
1

B

∑
j∈B

gj(θ),

where B is a mini-batch of size B sampled uniformly with replacement from {1, ..., N}. 1

i) Show that this mini-batch estimator is also unbiased.

ii) Show that the variance of the mini-batch estimator is reduced by a factor of B:

Var(gB(θ)) = EB[||gB(θ)−∇F (θ)||22] =
1

B
σ2
θ

Let a mini-batch B of size |B| = B be drawn i.i.d. with replacement and

gB(θ) =
1

B

∑
j∈B

gj(θ).

(5 Points) Unbiasedness:

E
[
gB(θ)

]
=

1

B

∑
j∈B

E[gj(θ)] =
1

B
·B∇F (θ) = ∇F (θ).

1Sampling with replacement means that after a data point is selected for the mini-batch, it is “put back” into the dataset
and is eligible to be selected again for the same mini-batch. This is a common assumption that simplifies the mathematical
analysis of variance, as it ensures every selection is an independent event.

3



(5 Points) Variance reduction: independence (from sampling with replacement) yields

Var
(
gB(θ)

)
= E

∥∥gB(θ)−∇F (θ)
∥∥2 =

1

B2

∑
j∈B

E
∥∥gj(θ)−∇F (θ)

∥∥2 =
1

B
σ2
θ .

(d) (10 points) Connection to convergence - For ECE 7290 students: Look at the long-term error

term in the SGD convergence from the lecture:
ηLσ2

g

2µ . Based on your result from part (c), if we use

a mini-batch of size B, how does this error term change? What does this tell you about the trade-off

between computational cost per iteration and convergence behavior when choosing a batch size?

The error term decreases by a factor of B. But the per-iteration computational cost increases by a
factor of B.

Question 3: GD on Nonconvex Functions (25 points)

Consider the 2D nonconvex function below, which is a classic example of a surface with multiple minima

and a saddle point. A plot of the function is provided for visualization.

f(x1, x2) = x4
1 − 2x2

1 + x2
2

x1x2

f
(x

1
,x

2
)

(a) (5 points) Find all stationary points of f by setting its gradient ∇f(x1, x2) to zero.

(2 Points)

∇f(x1, x2) =

∂f/∂x1

∂f/∂x2

 =

4x3
1 − 4x1

2x2

 =

4x1(x
2
1 − 1)

2x2

 .

(2 Points) Setting ∇f = 0 gives x2 = 0 and x1 ∈ {−1, 0, 1}.

(1 Points)
Stationary points: (−1, 0), (0, 0), (1, 0).

(b) (5 points) Compute the Hessian matrix ∇2f(x1, x2).

4



∇2f(x1, x2) =

 ∂2f/∂x2
1 ∂2f/∂x1∂x2

∂2f/∂x2∂x1 ∂2f/∂x2
2

 =

12x2
1 − 4 0

0 2

 .

(c) (5 points) For each stationary point you found, evaluate the Hessian and use its eigenvalues to classify

the point as a local minimum, local maximum, or a saddle point.

Stationary Point ∇2f(·) Eigenvalues / Type

(0, 0)

−4 0

0 2

 {−4, 2} ⇒ saddle

(±1, 0)

8 0

0 2

 {8, 2} ⇒ strict local minima

(d) (10 points) For ECE/ORIE 5290 students: One of the stationary points is a saddle point. If you

were to run GD and initialize it exactly at this saddle point, what would happen? Now, what would

happen if you initialized it very close to the saddle point (e.g., with a tiny random perturbation)?

Briefly explain your reasoning.

Gradient Descent (GD) with step size η > 0 updates xk+1 = xk − η∇f(xk).

– If initialized exactly at the saddle (0, 0), then ∇f(0, 0) = 0 and GD does not move: xk+1 =
xk = (0, 0).

– If initialized very close to the saddle, e.g. x0 = (ε1, ε2) with tiny εi, then ∇f(x0) ≈ (−4ε1, 2ε2),
so the GD step −∇f(x0) ≈ (4ε1, −2ε2) pushes the iterate away from x1 = 0 (toward x1 = ±1
depending on the sign of ε1) while contracting x2 toward 0. Hence GD escapes the saddle and
converges to one of the minima (±1, 0) for typical small perturbations.

(d) (10 points) For ECE 7290 students: The stationary point at (0, 0) is a saddle point. Let’s analyze

how Gradient Descent escapes it.

(1) Consider an initial point very close to the saddle, x0 = [ϵ, ϵ]⊤, for a very small ϵ > 0. Compute

the gradient ∇f(x0). For a very small ϵ, you can ignore higher-order terms (like ϵ3). What is the

approximate direction of the first GD step, −∇f(x0)?

(2) The Hessian at the saddle point, ∇2f(0, 0), has one negative eigenvalue. The corresponding

eigenvector points in the direction of negative curvature—the direction the algorithm will “roll

off” the saddle. What is this eigenvector?

(3) Compare your answers from (1) and (2). What do you notice about the relationship between the

GD step direction and the eigenvector corresponding to the negative eigenvalue? Briefly explain

why this ensures GD can escape saddle points in practice.

5



Question 4: Coding - Implementing and Comparing Optimizers (30 points)

In this problem, you will implement and compare different first-order optimization algorithms on a logistic

regression problem. The dataset is specifically designed to be ill-conditioned to highlight the performance

differences between the algorithms.

(a) Data Generation and Visualization (5 points)

Use the provided Python code snippet to generate and visualize the 2D synthetic dataset. The features

have been intentionally scaled to create an ill-conditioned problem (notice the different scales on the x and

y axes). Explain why this feature scaling leads to an ill-conditioned Hessian for the logistic regression loss.

import numpy as np

from sklearn.datasets import make_classification

import matplotlib.pyplot as plt

# Generate a synthetic dataset

X, y = make_classification(n_samples=200, n_features=2, n_redundant=0,

n_informative=2, random_state=1, n_clusters_per_class=1)

# Induce ill-conditioning by scaling one feature

X[:, 1] = X[:, 1] * 20

# Plotting the data

plt.scatter(X[:, 0], X[:, 1], c=y, edgecolors=’k’, cmap=plt.cm.Paired)

plt.xlabel("Feature 1")

plt.ylabel("Feature 2 (scaled)")

plt.title("Ill-Conditioned Synthetic Dataset")

plt.show()

In logistic regression, the Hessian has the form

H(θ) = X⊤W (θ)X,

where W (θ) is a positive diagonal matrix depending on the current class probabilities. If one feature xj is

scaled by a large factor s, the j-th column of X is multiplied by s. This scales the curvature along that

coordinate by approximately s2 in X⊤WX, yielding widely separated eigenvalues of H. Hence the condition

number κ(H) = λmax(H)/λmin(H) becomes large and the problem is ill-conditioned. Geometrically, the loss

surface becomes very steep in the scaled direction and relatively flat in others, which slows and destabilizes

first-order methods unless features are normalized.

(b) Implementation (10 points)

Implement the following three algorithms to minimize the Binary Cross-Entropy loss (introduced in the class)

on this dataset. You will also need to implement the sigmoid function and the BCE loss and its gradient.

(a) Batch Gradient Descent (GD)

(b) Heavy-ball Method (GD with Momentum)

(c) Stochastic Gradient Descent (SGD) with a mini-batch size of your choice (e.g., B = 8).

6



(c) Hyperparameter Tuning (5 points)

For each of the three algorithms, experiment to find a “good” set of hyperparameters (learning rate η and,

for momentum methods, the momentum parameter β). There is no single “correct” answer, but you should

demonstrate that you’ve tried a few values to get reasonable performance. Report the final hyperparameters

you chose for each algorithm.

(d) Comparison and Analysis (10 points)

Using your best hyperparameters from part (c), run all four optimizers from the same initial point θ0 = 0

for a fixed number of epochs (e.g., 50 epochs).

(a) Plot 1: Generate a single plot showing the Loss vs. Epochs for all four methods. The y-axis should

be on a logarithmic scale.

(b) Plot 2: Generate a single plot showing the 2D data points and the final decision boundary learned

by each of the four algorithms.

(c) Written Analysis: In a short paragraph, answer the following:

• Why does the path of standard GD likely show slow, zig-zagging behavior on this dataset?

• How does the Heavy-ball method improve upon this? What is the key difference you observe in

their loss curves?

• Describe the SGD loss curve. Why is it noisy, and what is its main advantage in the early epochs

compared to the batch methods?

(c) Written Analysis.

(a) Why GD zig–zags and is slow. Standard GD follows the steepest descent direction, which causes
oscillations when the loss surface is ill-conditioned. The gradient alternates across the steep direction
and makes little progress along the flat one. A small step size is required for stability, leading to slow
convergence.

(b) How Heavy-ball improves upon GD. Heavy-ball adds a momentum term θk+1 = θk − η∇F (θk) +
β(θk − θk−1) that averages gradients over iterations. This damps oscillations in steep directions and
accelerates motion along flat ones, producing a smoother and faster-decaying loss curve than GD.

(c) Why the SGD loss is noisy and its advantage. SGD uses stochastic gradient estimates with variance
σ2
g/B, causing the loss curve to fluctuate. Despite the noise, each update is cheap and frequent,

enabling rapid early progress.

7


