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Objective of This Assignment

The objective is to bridge the gap between the mathematical foundations of optimization and their practical
application in machine learning. The first two problems are designed to reinforce the essential prerequisite
knowledge from linear algebra and multivariate calculus, focusing on the concepts of matrix properties and
gradient calculations that form the bedrock of continuous optimization. The subsequent problems will build
on this foundation, guiding you to implement a gradient descent algorithm on real loss functions.

Question 1: Linear Algebra Review (15 points)

This problem reviews the concept of positive semidefinite (PSD) matrices, which is fundamental to convex

optimization.

(a) (5 points) Consider the following three matrices:

For each matrix, determine if it is positive definite (PD), positive semidefinite (PSD), or indefinite.

(b) (5 points) Briefly explain your reasoning for each matrix. You can justify your answer by computing

eigenvalues, checking principal minors, or using the definition 87 M.
(c¢) (5 points) Consider the quadratic function
1
() = §0TM0 —b7e.

Explain why the convexity of this function depends on the properties of the matrix M. What property
must M have for f(0) to be convex?

Question 2: Calculus Review (40 points)

This problem reviews multivariate calculus, which is essential for gradient-based optimization.



(a) (5 points) Find the first derivative, f/(6), for the following function, which requires the chain rule:
(0) = exp(—(0 — 2)?)

(b) (5 points) Consider the function h(f) = (# —5)? + 3. Find the value of § that minimizes this function.

Explain how you can use the derivative to find this minimum.
(¢) (5 points) Let @ € R™, A € R™*™ and b € R™. Consider the standard least-squares objective function:
£(6) =146 — bl|3
Derive the gradient of this function with respect to 8, which is the vector Vf(0) € R™.
(d) (5 points) Derive the Hessian of f(@) with respect to €, which is the matrix V2 f(0) € R**".

(e) (5 points) Using your result from part (d), what can you say about the convexity of f(0)? (Hint:
Think about the properties of the matrix A” A and your conclusions from Problem 1).

(f) (5 points) The sigmoid function, o(z) = (1 +e~*)71, is a core component of logistic regression. Find
its derivative, o’(2), with respect to z.
Hint: Show that the derivative can be simplified to the well-known form: o(z)(1 — o(2)).

(g) (5 points) The Binary Cross-Entropy (BCE) loss for a single example (x,y) with y € {0,1} is:
Lpcg(8) = —ylog(a(67x)) — (1 - y) log(1 — o(8"x))
A more compact form, often used in optimization literature, is the log-sum-exp form:
Leomp(0) = —y0" x + log(1 + exp(6”x))

Prove that these two forms are mathematically equivalent.
Hint: Let z = 0Tx. Start with the BOE form and substitute the definition of o(z). You may find the
identity log(1 + e~ *) = log(1 + €*) — z useful.

(h) (5 points) Using the compact form, Leomp(80), derive its gradient with respect to the parameter vector
0, which is V Lcomp(8).
Hint: Your answer should be in a simple form involving the prediction o(0Tx) and the true label y.

Question 3: Linear Regression (20 points)

Consider the linear regression problem of finding 6 that minimizes the following least square loss function

N

L(O) = 5 >0 x: — ) )

where D = {Xi’yi}i]\il is the training data set with x; € R? and y; € R, @ € R? is the parameter to be
determined, and A € R is the regularization coefficient. We plan to implement batch gradient descent and
stochastic gradient descent algorithms to solve this problem, with a constant learning rate of «.

(a) (5 points) Write the batch gradient descent update at the ¢! iteration, for solving this problem.
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Table 1: Dataset for Problem 3

(b) (5 points) Now consider you are provided with the data set given in Table 1. For this part, let o = 1.
By taking the initial parameter 8° = (0, 0) ", find the parameter ' obtained after updating for one
iteration using batch gradient descent.

(c) (10 points) For the batch gradient descent in (b), after updating 6° via two batch gradient descent
iterations, does the loss L(0) decrease at 6% compared with 8°? If yes, please show the decrements
L(6?) — L(8°); if no, please suggest a way to address the stepsize o that decreases in the loss L(8).

Question 4: Logistic Regression (30 points)

We consider using logistic regression for a 2-class classification setting. Let D = {Xi’yi}il be a dataset

9

for 2-class classification, where x; € R? and y; € {0,1}.

(a) (10 points) The assumption for logistic regression is that the log-odds over the label class is affine i.e.

P(x|y:1) —07x
1Og<P<x|y=o>) =0 @

Assuming additionally the label distribution is even (i.e. P(y = 0) = P(y = 1) = 0.5), derive the
posterior P(y|x) for both y = 0 and y = 1. Hint: use the Bayes rule.

(b) (10 points) For binary classification with y; € {0, 1}, the prediction rule using logistic regression is:
§i = 1if P(y = 1]x) > 0.5,

4; = 0 otherwise.
The loss function of the logistic regression is given by
N
L(0) = Z [—yiBTxi + log(1 + exp(HTXi))} . (3)
n=1
We would like to conduct the Gradient Descent on 6 to minimize the loss function. Can you perform

1-step Gradient Descent update with step size > 0 to find 8**! from 6*?

(¢) (10 points) Following all the settings in question (b), additionally assume that at the current iteration
t we have 8% that successfully classifies all data points, and the data points with both labels exist in
the dataset. Compare the norm of 8! to the norm of 8. Which is greater?



