
[Fall 2025] ECE 5290/7290 and ORIE 5290
Distributed Optimization for Machine Learning and AI

Practice Problems

How to use this practice set effectively:

• Start by reviewing your lecture notes and homework solutions to identify weak areas.

• Attempt each problem in this set without referring to the solution first. Treat each as an exam question.

I know it is tough (in fact, it is harder than the actual exam), so view this set as additional reading material.

• After solving, compare your reasoning with the provided solutions—focus not only on the final answer

but also on the step-by-step logic and the role of assumptions.

• For computational questions, practice deriving results by hand; for conceptual or multiple-choice ques-

tions, justify why each incorrect option fails.

• Revisit problems involving eigenvalue geometry, stochastic gradients, or network mixing several days

later—spaced repetition helps retain intuition.

Question 1: Federated Learning: Personalization vs. Global Model

A mobile keyboard app trains next-word prediction via federated learning. Different users type in different

styles (non-IID). You can deploy either a single global model or a global model with lightweight on-device

personalization (e.g., last layer fine-tuning).

Which statement is most accurate?

(a) Personalization helps most when data are IID and harms when data are non-IID.

(b) Personalization helps when data are non-IID by adapting to user-specific patterns with little extra

communication.

(c) Personalization mainly reduces communication cost but usually worsens accuracy on non-IID data.

(d) Personalization is only useful if devices have identical compute and battery profiles.

Correct: (b). Non-IID data benefit from small local adaptations on top of a shared global model, with little
extra bandwidth.

Question 2: Local SGD in a Bandwidth-Limited Setting

In federated training with Local SGD, each device does τ local updates between communications. You have

a tight uplink budget.

Which statement best describes the trade-off as τ increases?
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(a) Communication cost rises and client drift shrinks.

(b) Communication cost drops, but client drift grows, which hurts final accuracy under data heterogeneity.

(c) Both communication cost and drift grow linearly.

(d) Neither communication cost nor drift is affected by τ .

Correct: (b). Fewer syncs save bandwidth but allow local models to drift further apart on non-IID data.

Question 3: Gradient Compression vs. Convergence in Distributed Training

To save bandwidth, you apply unbiased stochastic quantization with variance parameter ω (larger ω = fewer

bits). With a fixed wall-clock budget, when is more compression (larger ω) most advantageous?

(a) Early training, when gradients are large and faster iteration throughput dominates.

(b) Late training, when gradients are tiny and we aim for the lowest possible variance floor.

(c) Equally beneficial early and late.

(d) Never beneficial; unbiased compression always slows convergence.

Correct: (a). Early on, extra iterations from faster communication outweigh the added quantization variance;
later you typically reduce compression to reach a lower error floor.

Question 4: Learning-Rate Schedules Under a Time Budget

You can run only 3 wall-clock hours of training. Which schedule typically gives better accuracy?

(a) Fixed learning rate throughout.

(b) Linear warm-up for a short initial phase, then step decay (reduce the LR by a constant factor at a few

planned times) matched to the allotted time.

(c) Start with an extremely large learning rate and keep it constant.

(d) Decrease the learning rate by a random amount each epoch.

Correct: (b). A brief warm-up avoids early instability (especially with larger batches/initialization), and step
decay lets you take larger steps early and smaller steps later to settle to a lower error—within the same time
budget.

Question 5: Robustness of Gradient Descent to Noise Geometry

This question explores how the curvature of a quadratic function affects the steady-state error of Gradient

Descent (GD) when gradients are noisy.

We consider

f(x) = 1
2x

⊤Ax, A ≻ 0, ∇̂f(x) = Ax+ ε,

where E[ε] = 0 and Cov(ε) = σ2A. The GD update is

xt+1 = xt − η ∇̂f(xt).
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Linear algebra hint. Any symmetric positive definite matrix A admits an eigendecomposition

A = UΛU⊤,

where U is orthonormal (U⊤U = I) and Λ = diag(λ1, . . . , λd) collects the eigenvalues (λi > 0). In these

coordinates, the dynamics in x decouple into d one-dimensional scalar “modes.”

(a) Which of the following best explains the purpose of the change of coordinates zt = U⊤xt?

(a) It rescales the learning rate to accelerate convergence.

(b) It transforms the multi-dimensional update into independent one-dimensional recursions.

(c) It eliminates gradient noise entirely.

(d) It forces all eigenvalues to become equal.

Answer: (b) Explanation: In the eigenbasis of A, each coordinate evolves independently as a scalar

recursion z
(i)
t+1 = (1− ηλi)z

(i)
t − ηε

(i)
t , so the dynamics “decouple” across eigenvectors.

(b) (6 points) In each eigen-direction, the mean update follows z
(i)
t+1 = (1− ηλi)z

(i)
t . What is the stability

condition on the stepsize η so that GD converges in mean?

(a) 0 < η < 1/L

(b) 0 < η < 1/µ

(c) 0 < η < 2/L

(d) 0 < η < 2/µ

Answer: (c) Explanation: The recursion is stable when |1 − ηλi| < 1 for all eigenvalues, giving the

condition 0 < η < 2/λmax = 2/L. If η exceeds this range, iterates diverge.

(c) (5 points) Suppose the gradient noise covariance aligns with A (i.e., Cov(ε) = σ2A). Which statement

best describes the geometry of the steady-state error covariance in x-space?

(a) The error covariance is isotropic (same in all directions).

(b) The error ellipse is elongated along directions of large λi (high curvature).

(c) The error ellipse is elongated along directions of small λi (flat curvature).

(d) The noise geometry has no influence on the steady-state error.

Answer: (b) Explanation: Noise variance in each mode scales with curvature (∝ λi), so directions with

higher λi exhibit stronger fluctuations, forming an elongated “error ellipse” along steep eigenvectors.

(d) (5 points) Two matrices have identical eigenvalues but different eigenvectors:

A1 =

(
10 0

0 1

)
, A2 =

(
5.5 4.5

4.5 5.5

)
.

If GD starts from x0 = [1, 1]⊤, which statement best describes the trajectories?

(a) A1: Zig-zag along coordinate axes; A2: smooth diagonal path.

(b) A1: Circular path; A2: chaotic path.

(c) A1: Straight diagonal; A2: divergent.

(d) Both produce identical trajectories.
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Answer: (a)

Explanation: For f(x) = 1
2x

⊤Ax, the level sets f(x) = c are ellipses given by x⊤Ax = 2c. Their princi-

pal axes are the eigenvectors of A, and the gradient ∇f(x) = Ax is orthogonal to these ellipses—hence

GD, which moves along −∇f(x), always steps perpendicular to the current contour.

For A1 = diag(10, 1), the eigenvectors coincide with the coordinate axes, so the ellipses are axis-

aligned. The gradient components along x1 and x2 differ greatly: the steep x1 direction dominates at

first, pulling the iterate quickly toward the x2 axis. Once near the axis, the x2 component dominates

and reverses direction, leading to alternating updates that appear as a zig-zag trajectory.

For A2, the same eigenvalues produce ellipses of the same shape, but rotated by 45◦. Its eigenvectors

are [1, 1]⊤/
√
2 and [1,−1]⊤/

√
2, and the starting point x0 = [1, 1]⊤ lies exactly along one eigenvector.

Therefore, each gradient step points along that same diagonal direction, producing a smooth, nearly

straight path to the minimum. The two systems share the same condition number (and thus the same

convergence rate) but exhibit very different trajectory geometries.

Question 6: GD with Model Mis-specification

Consider f(x) = 1
2x

⊤Ax− b⊤x, but the update uses Ã = A+∆, i.e.,

xt+1 = xt − η(Ãxt − b). (⋆)

Hint. Neumann series. For small ∥∆∥, (A+∆)−1 = A−1 −A−1∆A−1 +O(∥∆∥2).

(a) Express the fixed point x̃⋆ of the perturbed iteration (⋆) and its bias x̃⋆ − x⋆ relative to x⋆ = A−1b.

The iteration is linear and converges (for small η) to the fixed point of x = x− η(Ãx− b), i.e.

Ãx̃⋆ = b ⇒ x̃⋆ = (A+∆)−1b.

Using the Neumann expansion for small ∥∆∥: (A + ∆)−1 = A−1 − A−1∆A−1 + O(∥∆∥2). Hence
bias:

x̃⋆ − x⋆ =
[
(A+∆)−1 −A−1

]
b ≈ −A−1∆A−1b.

(b) Give a sufficient condition on (η, ∥∆∥) for convergence of the iteration and bounded bias.

Convergence requires the spectral radius of I − ηÃ to be

ρ(I − ηÃ) < 1

a sufficient condition is 0 < η < 2/∥Ã∥. If A ≻ 0 and ∥∆∥ < λmin(A), then

Ã ≻ 0 and ∥Ã∥ ≤ ∥A∥+ ∥∆∥.

Thus choose
η < 2/(∥A∥+ ∥∆∥).
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Bounded bias follows from (A+∆)−1 existing and the first-order estimate above:

∥x̃⋆ − x⋆∥ ≲ ∥A−1∥2∥∆∥ · ∥b∥.

(c) Discuss why ill-conditioning (e.g., λmin(A) is very small) magnifies solution bias even for small ∥∆∥.

Because ∥A−1∥ = 1/λmin(A) is large for ill-conditioned A, the first-order bias ∥A−1∆A−1b∥ scales
like ∥A−1∥2∥∆∥∥b∥, hence small model error causes large solution bias.

Question 7: GD with Random Step Perturbations

This problem explores how small randomness in the stepsize affects Gradient Descent (GD) on a quadratic.

Let ηt = η(1 + ϵt) with i.i.d. ϵt satisfying E[ϵt] = 0 and Var(ϵt) = τ2 ≪ 1. Consider f(x) = 1
2 x

⊤Ax with

A ≻ 0, and the update xt+1 = xt − ηtAxt.

(a) Derive how stepsize randomness changes the expected squared distance compared with deterministic

GD. Express your result using the eigenvalues λi of A.

In the eigen-basis, zt = U⊤xt and each scalar mode evolves as

z
(i)
t+1 =

(
1− η(1 + ϵt)λi

)
z
(i)
t .

Then
E
[
(z

(i)
t+1)

2
]
= E
[
(1− ηλi − ηλiϵt)

2
]
(z

(i)
t )2 =

[
(1− ηλi)

2 + η2λ2
i τ

2
]
(z

(i)
t )2.

Versus deterministic GD (factor (1 − ηλi)
2), random steps add the term η2λ2

i τ
2, so the expected

squared distance decreases more slowly.

(b) Qualitatively, when does stepsize randomness have a significant effect, and when can it be ignored?

The extra term η2λ2
i τ

2 is largest for steep directions (large λi) and for larger η, so randomness matters
when η is near its usual upper range or the problem is ill-conditioned. If τ2 is tiny and ηλi ≪ 1 for all
i, the effect is negligible and behavior is close to fixed-step GD.

(c) For A = diag(1, 100) and η = 0.01, compare qualitatively the effect of τ = 0, 0.05, 0.1 on progress

along each coordinate.

Mode λ1 = 1: (1 − ηλ1)
2 + η2λ2

1τ
2 ≈ (0.99)2 + η2τ2, so the impact is small even when τ grows.

Mode λ2 = 100: the factor (1 − 1)2 + η2 ·1002τ2 = η2104τ2 grows quickly with τ , causing noisy,
slower progress in the steep direction. Thus τ = 0 behaves cleanly; τ = 0.05 shows visible slow-down
in the λ2 mode; τ = 0.1 makes that mode markedly noisier.
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Question 8: Optimal Mini-batch under a Fixed Time Budget

In mini-batch stochastic gradient descent (SGD), each update uses a random batch of B samples. Larger

batches produce more accurate gradient estimates (smaller variance) but are slower to compute. Smaller

batches allow more updates per unit time but introduce higher gradient noise. This question examines how

to choose B when total computation time is limited.

Setup. Assume that one mini-batch SGD step with batch size B takes

citer(B) = c0 + c1B units of time,

where c0 is fixed overhead (e.g., setup and synchronization) and c1B accounts for the cost of processing

B samples. The total available training time is T , so the number of updates that can be performed is

approximately

N ≈ T

citer(B)
=

T

c0 + c1B
.

For sufficiently small learning rate η, the expected suboptimality after N steps can be approximated by

E(N,B) ≈ α(1− γ)N︸ ︷︷ ︸
optimization term

+ β
ησ2

B︸ ︷︷ ︸
noise floor

,

where: - α and γ describe the convergence speed of the noiseless dynamics; - σ2 measures gradient variance;

- β ησ2

B represents the steady-state noise floor, which decreases as B increases.

This captures the trade-off: smaller B ⇒ more iterations (larger N) but noisier updates; larger B ⇒ fewer

updates but lower variance.

(a) Formulate the optimization problem for selecting B that minimizes E(N,B) given T , c0, c1, and σ2.

Substitute N = T/(c0 + c1B) into E(N,B) to get

min
B∈N

α(1− γ)T/(c0+c1B) + β
ησ2

B
.

The first term decreases with smaller B (more steps), while the second decreases with larger B (less
variance), illustrating the fundamental computation–variance trade-off.

(b) How does the optimal batch size B⋆ qualitatively vary with σ2, total time T , and the ratio c1/c0?

B⋆ increases with higher σ2 (noisier gradients make larger batches worthwhile), with longer total time
T (more time allows the benefit of variance reduction to accumulate), and decreases when c1/c0 is
large (high per-sample cost discourages large batches).

(c) Under what conditions is B = 1 (single-sample updates) close to optimal? Explain intuitively.

When the fixed overhead c1 dominates the computation cost (so each update is relatively cheap) and
the optimization term α(1 − γ)N dominates the noise floor (early in training or when the variance is
modest), small batches are efficient. In this regime, B = 1 provides many quick, noisy updates that
still yield fast initial progress.
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Question 9: Importance Sampling for SGD

In standard stochastic gradient descent (SGD), at each iteration, we randomly select one data sample i (or

a small batch) and compute its gradient ∇fi(x) as an unbiased estimate of the full gradient

∇f(x) =
1

n

n∑
i=1

∇fi(x).

Uniform sampling (pi = 1/n) treats all samples equally, but not all samples contribute equally to the variance

of the stochastic gradient. If some gradients are much larger than others, it can be more efficient to sample

them more often.

To formalize this, consider the importance-sampling variant of SGD: at each step, select index i ∈ {1, . . . , n}
with probability pi > 0 (where

∑
i pi = 1) and compute

g =
1

npi
∇fi(x).

This weighting ensures the estimator remains unbiased even when sampling is non-uniform.

(a) Show that g is an unbiased estimator of the true gradient ∇f(x), and write an explicit expression for

its variance.

Unbiasedness:

E[g] =
n∑

i=1

pi
1

npi
∇fi(x) =

1

n

n∑
i=1

∇fi(x) = ∇f(x).

Variance:

Var(g) = E
[
∥g −∇f(x)∥2

]
=

n∑
i=1

pi

∥∥∥∥∥∥ 1

npi
∇fi(x)−

1

n

n∑
j=1

∇fj(x)

∥∥∥∥∥∥
2

.

(b) Explain how choosing probabilities pi proportional to ∥∇fi(x)∥ can reduce variance compared with

uniform sampling. (You may assume ∥∇fi(x)∥ are known.)

A convenient upper bound on the variance is

n∑
i=1

1

n2pi
∥∇fi(x)∥2 − ∥∇f(x)∥2.

Minimizing the first term subject to
∑

i pi = 1 gives (by Cauchy–Schwarz)

p⋆i ∝ ∥∇fi(x)∥.

This choice samples larger gradients more frequently, balancing their contribution to total variance.
Compared with uniform pi = 1/n, it never increases variance and typically decreases it significantly
when gradient magnitudes vary widely.

(c) In large-scale or deep-learning settings, it is often expensive to compute ∥∇fi(x)∥ for all samples.

Discuss practical ways to approximate or implement importance sampling in such systems.
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Common strategies include:

– Using stale gradient norms from recent iterations instead of recomputing them each step;

– Using the per-example loss fi(x) as a proxy for ∥∇fi(x)∥;
– Performing stratified sampling by class or cluster to ensure balanced coverage;

– Approximating at coarser granularity, e.g., layer-wise or block-wise gradient norms in deep models;

– Periodically refreshing the sampling distribution pi to reduce overhead.

These heuristics preserve most of the variance-reduction benefits while keeping computation manage-
able.

Question 10: Optimal Mixing Step on a 3-Node Path

In distributed averaging or consensus algorithms, each node updates its value by mixing with its neighbors.

Let W denote the mixing matrix, defined as

W = I − αL,

where L is the graph Laplacian and α > 0 is the mixing stepsize controlling how strongly nodes average with

their neighbors.

1 2 3

P3: 3-node path graph

The convergence rate of the consensus process

xt+1 = Wxt

depends on the spectral properties of W : the largest

eigenvalue is 1 (corresponding to the consensus sub-

space), and the second-largest eigenvalue magnitude ρ2(W ) determines the asymptotic convergence speed:

∥xt − x̄∥ ≈ ρ2(W )t.

Smaller ρ2(W ) means faster averaging (shorter mixing time).

We consider a simple 3-node path graph (nodes 1–2–3) and aim to choose α to minimize ρ2(W ).

(a) Write down the Laplacian L, compute the eigenvalues of the Laplacian L and then the eigenvalues of

W = I − αL in terms of α.

For the 3-node path, the Laplacian is

L =

 1 −1 0

−1 2 −1

0 −1 1

 ,

which has eigenvalues {0, 1, 3}. Therefore W = I − αL has eigenvalues

{ 1, 1− α, 1− 3α }.

(b) Find the value α⋆ that minimizes the second-largest eigenvalue magnitude max{|1− α|, |1− 3α|}, and
compute the corresponding convergence rate.
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To minimize the maximum magnitude, set |1 − α| = |1 − 3α|, giving α = 1
2 . Then the nontrivial

eigenvalues are 1− 1
2 = 1

2 and 1− 3 1
2 = − 1

2 . Hence the second-largest eigenvalue magnitude (SLEM)
is ρ2(W ) = 1

2 . The asymptotic contraction per step is therefore 0.5.

Question 11: Heterogeneity and Slow Mixing in Decentralized SGD

Decentralized SGD replaces global averaging with local message passing among neighbors:

xk+1
i =

∑
j∈Ni

Wij x
k
j − η∇fi(x

k
i ),

where W is a mixing matrix satisfying W1 = 1, η is the stepsize, and each node i holds a local objective

fi(x). When data are heterogeneous (local optima differ) and communication is infrequent (poorly connected

network), the nodes can drift apart, leading to oscillation or even divergence if η is too large.

This problem asks you to construct a minimal counterexample illustrating this effect.

(a) Construct a minimal example (network topology, local objectives, and stepsize choice) where decen-

tralized SGD fails to converge because of strong heterogeneity and weak mixing. Clearly state your

setup and explain the mechanism behind divergence.

Setup: Consider two nodes (1 and 2) connected by a single edge with a small mixing weight α ≪ 1:

W =

(
1− α α

α 1− α

)
.

Let the local objectives be strongly conflicting:

f1(x) =
1
2 (x− 1)2, f2(x) =

1
2 (x+ 1)2.

Then the local minimizers differ by 2. With a large stepsize η, each node moves aggressively toward
its own minimizer before sufficient mixing occurs. Because W exchanges information slowly, the two
nodes repeatedly “overshoot” in opposite directions, producing oscillations or even divergence in their
disagreement x1 − x2.

(b) Suggest one or more strategies to restore convergence and justify why they work.

Possible remedies include:

– Reduce the stepsize η: smaller updates limit local overshoot, giving mixing more time to reconcile
nodes before they drift apart.

– Improve connectivity: increase the spectral gap of W (e.g., larger α or adding links) to accelerate
information averaging.

– Periodic global averaging: occasionally synchronize all nodes (hybrid decentralized/federated
approach) to reset accumulated disagreement.

Each mitigation strengthens the coupling between nodes relative to their local drift, stabilizing the
dynamics.
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(c) In practice, how can one detect that such instability is occurring during training? What empirical

signals would indicate a poorly tuned decentralized system?

Typical warning signs include:

– Rapidly growing disagreement
∑

i ∥xi − x̄∥2 between nodes;

– Oscillating or divergent local losses despite bounded gradients;

– Sensitivity: a small increase in η causes training to diverge;

– Network-wide quantities (e.g., averaged loss) fluctuate without settling.

Such behaviors indicate that the combination of large η and small spectral gap (slow mixing) makes
the decentralized updates unstable.

Question 12: Choosing Local Steps τ under Time and Heterogeneity

In federated / local-SGD style training, each communication round performs τ local gradient steps before

synchronizing across clients. Let the per-round wall time be

T (τ) = τ ccomp︸ ︷︷ ︸
local compute

+ ccomm︸ ︷︷ ︸
communication

,

so the number of rounds in time budget T is approximately N(τ) ≈ T/T (τ). A stylized expected error model

that separates optimization progress, SGD noise, and client-drift effects is

E(τ) ≈ A

ηN(τ)︸ ︷︷ ︸
optimization term

+ B η σ2︸ ︷︷ ︸
SGD noise floor

+
C

τ︸︷︷︸
mini-batch variance reduction

+ D τ︸︷︷︸
heterogeneity (drift) penalty

,

where A,B,C,D > 0 are problem-dependent constants and η is the stepsize (assumed fixed here). This

captures the trade-off: increasing τ reduces communication and the C/τ term, but increases round time and

the drift term Dτ .

(a) Give qualitative guidelines for the choice of τ in the two regimes: (i) ccomm ≫ ccomp (communication-

dominated), and (ii) ccomm ≪ ccomp (compute-dominated).

(i) Communication-dominated ccomm ≫ ccomp. Since each round is expensive to communicate,
using a larger τ amortizes ccomm over more local work: T (τ) ≈ τccomp + ccomm decreases relative
round-overhead as τ increases. Increasing τ also shrinks C/τ . However, too large τ inflates the
drift penalty Dτ . Guideline: increase τ until the marginal drift cost Dτ begins to outweigh the
communication savings; keep τ where C/τ and Dτ are balanced.

(ii) Compute-dominated ccomm ≪ ccomp. Here T (τ) ≈ τccomp, so increasing τ reduces the number
of rounds nearly inversely and slows optimization progress. Moreover, large τ increases drift (Dτ)
while providing diminishing gains in C/τ . Guideline: prefer smaller τ to keep rounds frequent and drift
small; only increase τ if C/τ clearly dominates other terms.

(b) Treating τ as continuous, differentiate the smooth surrogate E(τ) ≈ A

η

T (τ)

T
+Bησ2 +

C

τ
+Dτ (using

N(τ) = T/T (τ)) and give the interior optimality condition when it exists.
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Using T (τ) = τccomp + ccomm, the surrogate becomes

E(τ) ≈ A

η

τccomp + ccomm

T
+ Bησ2 +

C

τ
+ Dτ.

Differentiating (ignoring constants independent of τ):

dE

dτ
=

Accomp

ηT
− C

τ2
+ D.

An interior minimizer satisfies

C

τ2
=

Accomp

ηT
+ D =⇒ τ⋆ =

√
C

Accomp/(ηT ) + D

provided the right-hand side is positive. This shows τ⋆ increases when communication/optimization
pressure is high (small Accomp/(ηT ) and small D), and decreases as heterogeneity D grows.

(c) How does stronger client heterogeneity (non-IID data) affect the optimal τ?

Heterogeneity increases the drift penalty D (local models diverge more during unsynchronized steps).

From τ⋆ =
√
C /

(
Accomp/(ηT ) +D

)
, increasing D decreases τ⋆. Interpretation: with more hetero-

geneity, synchronize more frequently (smaller τ) to limit drift.

Question 13: (ECE 7290 only) Unbiased Quantization in SGD

Suppose gradients are compressed by an unbiased operator Q with

E[Q(g)] = g, E
[
∥Q(g)− g∥2

]
≤ ω ∥g∥2,

for some ω ≥ 0 that increases as fewer bits are used (larger compression). Assume f is L-smooth and

(optionally) µ-strongly convex; we use mini-batch size B so the baseline gradient noise is σ2/B.

(a) Modify a canonical SGD recursion to include quantization and identify the additional variance term

in a standard expected-suboptimality bound.

A single SGD step with compressed stochastic gradient gt is

xt+1 = xt − ηQ(gt), E[gt |xt] = ∇f(xt), E∥gt −∇f(xt)∥2 ≤ σ2/B.

Decompose Q(gt) = gt + δt with E[δt | gt] = 0 and E∥δt∥2 ≤ ω∥gt∥2. In the usual smooth/strongly-
convex analysis, the steady-state (noise-floor) term is proportional to the total variance entering the
update. Thus, compared to baseline variance σ2/B, quantization adds an extra component

extra variance ≈ ω E∥gt∥2 ≈ ω E∥∇f(xt)∥2

(the last approximation uses that mini-batch noise vanishes near the optimum). A stylized bound for
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µ-strongly convex f is

E
[
f(xt)− f⋆

]
≲ (1− ηµ)t C0 +

ηL

2µ

(
σ2

B
+ ω E∥∇f(xt)∥2

)
,

showing the new variance contribution scales with ω and the local gradient magnitude.

(b) Discuss the trade-off between fewer bits (larger ω) and more iterations within a fixed time budget.

Fewer bits reduce communication time per iteration, allowing more iterations in a fixed wall time,
improving the optimization term. However, larger ω increases the variance floor via ω E∥∇f(xt)∥2.
Trade-off: when far from the optimum (large gradients), the added quantization noise is relatively
small in relative terms and faster iterations can dominate; near the optimum (small gradients), the
quantization noise can dominate and limit accuracy. Hence, aggressive compression is best early; later,
one should reduce ω (more bits) to reach a lower error floor.

(c) Which regime tolerates quantization best?

(i) Near the optimum (small gradients),

(ii) Far from the optimum (large gradients).

Answer: (ii) Far from the optimum.

When gradients are large, the relative impact of the quantization error (bounded by ω∥g∥2) is smaller
compared to the signal scale, and the speedup from reduced communication is most useful. Near
the optimum, ∥∇f(xt)∥ is small but the added quantization term can dominate the variance floor,
preventing further progress.

Question 14: (ECE 7290 only) Heavy-Ball Method and Its Stability Region

Momentum methods accelerate gradient descent by adding an extra term that reuses previous steps to gain

inertia. For a quadratic objective

f(x) = 1
2x

⊤Ax, A ≻ 0, spectrum [µ,L],

consider the heavy-ball update

xt+1 = xt − η Axt + β(xt − xt−1),

where η > 0 is the stepsize and β ∈ [0, 1) is the momentum parameter.

Intuitively, the term β(xt − xt−1) pushes the iterate further along its previous motion direction. This can

speed up convergence if tuned well, but can also cause oscillation or divergence if η or β are too large. The

goal of this problem is to analyze when the iterates xt converge for quadratic functions—i.e., to find the

stability region in the (η, β) plane.

(a) Because A is symmetric positive definite, it can be diagonalized as A = UΛU⊤. Explain why this

transformation allows us to study the update one coordinate (eigen-direction) at a time, and write the

resulting 1D recursion.
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In the eigenbasis of A, zt = U⊤xt evolves independently along each eigen-direction. For eigenvalue

λi, the scalar variable z
(i)
t satisfies

z
(i)
t+1 = (1 + β − ηλi) z

(i)
t − β z

(i)
t−1.

Thus, instead of analyzing a d-dimensional system, we can study d separate 1D recursions.

(b) The stability of this recursion depends on how errors evolve over time. The characteristic polyno-

mial captures this evolution by describing how zt depends on its past values: for a linear recurrence

zt+1 = azt + bzt−1, the characteristic polynomial is r2 − ar− b = 0. Its roots r1, r2 describe how errors

decay or oscillate (stable if |r1|, |r2| < 1).

Write the characteristic polynomial for the heavy-ball update above and explain qualitatively what

determines stability.

Substituting a = 1 + β − ηλi and b = −β gives

r2 − (1 + β − ηλi)r + β = 0.

The two roots r1,2 describe how the error along that eigen-direction evolves. The method is stable
if both |r1,2| < 1 (errors shrink each step). Large η or β make |r| approach or exceed 1, causing
oscillation or divergence.

(c) Using your scalar recursion, determine roughly how the stability region depends on η, β, and the largest

eigenvalue L of A. In particular, describe the range of η that keeps the updates stable.

For a single eigenvalue λ, the heavy-ball update

xt+1 = (1 + β − ηλ)xt − βxt−1

is stable if both characteristic roots of

r2 − (1 + β − ηλ)r + β = 0

lie inside the unit circle (|r| < 1). Applying a standard discrete-time stability test gives

|β| < 1, 1− (1 + β − ηλ) + β > 0, 1 + (1 + β − ηλ) + β > 0.

Simplifying these inequalities yields
0 < ηλ < 2(1 + β).

To ensure convergence for all eigenvalues λ ∈ [µ,L], this must hold for the largest one, giving the
rough stability rule:

0 < η <
2(1 + β)

L
, 0 < β < 1.

When β = 0, this reduces to the standard condition for gradient descent η < 2/L.

13



Question 15: (ECE 7290 only) Heavy-Ball Method under Gradient Noise

In stochastic optimization, gradient noise prevents exact convergence even for convex quadratic problems.

Momentum can speed up optimization in noiseless settings but may also amplify stochastic fluctuations.

This question compares how plain GD and the heavy-ball momentum method behave under additive noise.

Setup. Consider the 1D quadratic model

f(x) = 1
2λx

2,

and assume each gradient evaluation is corrupted by additive noise:

gt = λxt + εt, E[εt] = 0, Var(εt) = σ2.

The GD and momentum updates are

GD: xt+1 = xt − ηgt, Momentum: xt+1 = xt − ηgt + β(xt − xt−1),

where η is the stepsize and β ∈ [0, 1) is the momentum parameter.

We are interested in how noise accumulates in the steady state—that is, the long-run expected value of

E[x2
t ] once transient effects vanish.

(a) For the scalar model above, derive how momentum changes the mapping from gradient noise εt to

parameter fluctuations xt. Express qualitatively (or quantitatively, if possible) how the steady-state

variance scales with β.

Starting from

xt+1 = (1 + β − ηλ)xt − βxt−1 − ηεt, E[εt] = 0, Var(εt) = σ2,

each update depends on both xt and xt−1.

To analyze it, define the 2D state vector

st =

[
xt

xt−1

]

the second-order recursion (because it involves two past iterates) can be written as

st+1 = Ast +Bεt, A =

[
1 + β − ηλ −β

1 0

]
, B =

[
−η

0

]
.

Let Σ = limt→∞ E[sts⊤t ] denote this steady-state covariance. From the recursion st+1 = Ast + Bεt,
taking the outer product and expectation gives

E[st+1s
⊤
t+1] = E

[
(Ast +Bεt)(Ast +Bεt)

⊤].
Because the gradient noise εt is zero-mean and independent of st, the cross terms vanish, leaving

E[st+1s
⊤
t+1] = AE[sts⊤t ]A⊤ + E[ε2t ]BB⊤.

At steady state, Σ = limt→∞ E[sts⊤t ] satisfies Σ = AΣA⊤ + σ2BB⊤. Solving yields

Var(xt) =
ησ2(1 + β)

λ(1− β)(2 + 2β − ηλ)
.
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When the learning rate η is small, the term ηλ in the denominator of the exact formula

Var(xt) =
ησ2(1 + β)

λ(1− β)(2 + 2β − ηλ)

is much smaller than the constants 2+2β. Neglecting it (a standard first-order approximation) simplifies
the expression to

Var(xt) ≈
ησ2

2λ(1− β2)
.

This approximation reveals two important behaviors:

– The variance grows linearly with the learning rate η and the noise level σ2, as in ordinary stochastic
gradient descent.

– The extra factor 1
1−β2 shows how momentum amplifies noise: as β increases toward 1, this factor

becomes large, meaning the iterates fluctuate more due to accumulated noise.

For example, if β = 0.9, then 1
1−β2 ≈ 5.3, so the steady-state variance is over five times larger than

that of plain gradient descent (β = 0). In short, higher momentum accelerates convergence in noiseless
problems but can substantially increase variability when gradients are noisy.

(b) Explain qualitatively when momentum improves and when it degrades performance.

Momentum helps when deterministic convergence speed is the bottleneck—i.e., in ill-conditioned, low-
noise problems where curvature varies strongly across directions. It accelerates slow modes without
significantly increasing variance. However, in high-noise regimes the 1

(1−β)2 amplification dominates,

causing noisy oscillations and higher steady-state error. Thus momentum trades faster transient decay
for greater steady-state variance.

(c) The impact of noise on the optimization dynamics depends on the noise-to-signal ratio, roughly mea-

sured by σ2/(λ2x2
t ) or by the steady-state noise level ησ2/λ. Use this idea to reason about when

momentum is helpful or harmful in the following cases:

(i) Ill-conditioned, low-noise problems (large condition number, small σ2);

(ii) Well-conditioned, high-noise problems (small condition number, large σ2);

(iii) Ill-conditioned, moderate-noise problems.

Option (iii) typically offers the best trade-off, while (i) also benefits. In (ii), noise dominates, so
momentum’s amplification is harmful. In (iii), momentum accelerates slow curvature directions (helping
ill-conditioned problems) while noise remains moderate enough that the amplification factor 1

(1−β)2

does not overwhelm the gains.

Question 16: (ECE 7290 only) Noisy Consensus Steady State

Consider the linear consensus iteration with additive noise

xk+1 = Wxk + ξk, E[ξk] = 0, Cov(ξk) = σ2I,
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where W ∈ Rn×n is a symmetric, doubly-stochastic mixing matrix: W1 = 1 and W = W⊤. Let J := 1
n11

⊤

be the projector onto the consensus subspace and P := I−J the projector onto the disagreement (mean-zero)

subspace. Write the average x̄k := 1
n1

⊤xk and the disagreement vector yk := Pxk.

Remark. Because λ1(W ) = 1, the network average follows a random walk under additive noise; a steady

state exists only for the disagreement part yk.

(a) Show that the network average is preserved in expectation but the disagreement exhibits a nonzero

variance floor. Derive the recursion for the disagreement covariance Σk := E[yk(yk)⊤] and the equation

that the covariance Σ := limk→∞ E[yk(yk)⊤] should satisfy at the steady state.

Taking expectations,

E[xk+1] = W E[xk] ⇒ E[x̄k+1] = 1
n1

⊤E[xk+1] = 1
n1

⊤WE[xk] = E[x̄k],

so the average is preserved in expectation.

For disagreement yk = Pxk, note PW = WP (since W1 = 1 and W is symmetric), hence

yk+1 = Pxk+1 = PWxk + Pξk = Wyk + Pξk.

With E[ξk] = 0 and independence across time, the disagreement covariance Σk := E[yk(yk)⊤] obeys

Σk+1 = WΣkW⊤ + E[Pξk(ξk)⊤P ] = WΣkW + σ2P.

If |λi(W )| < 1 for i ≥ 2, then Σk converges to the unique solution of the following equation

Σ = WΣW + σ2P

which yields a nonzero variance floor on the disagreement subspace.

(b) In the noisy consensus iteration

xk+1 = Wxk + ξk, E[ξk] = 0, Cov(ξk) = σ2I,

suppose W is symmetric and doubly stochastic with eigenvalues 1 = λ1 > λ2 ≥ · · · ≥ λn > −1. At

steady state, how does the disagreement variance in each eigenmode i ≥ 2 depend on λi?

Hint : Since yk+1 = Wyk + Pξk, in the eigenbasis of W , each mode i evolves as yk+1
i = λiy

k
i + ξki .

(a) Σ̃ii =
σ2

1− λi

(b) Σ̃ii =
σ2

1− λ2
i

(c) Σ̃ii = σ2(1− λ2
i )

(d) Σ̃ii = σ2λ2
i

Correct answer: (b). In the eigenbasis of W , each mode evolves as yk+1
i = λiy

k
i + ξki , so the

steady-state variance satisfies E[y2i ] = λ2
iE[y2i ] + σ2. Solving gives Σ̃ii = σ2/(1− λ2

i ) for i ≥ 2.
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(c) How does the spectral gap δ := 1−maxi≥2 |λi(W )| affect the steady-state level of disagreement across

the network?

(a) A larger spectral gap leads to more steady-state disagreement.

(b) A smaller spectral gap leads to less steady-state disagreement.

(c) The steady-state disagreement variance is roughly proportional to 1/δ, so smaller gaps (weaker

connectivity) yield larger disagreement.

(d) The spectral gap does not affect disagreement in steady state.

Correct answer: (c). Because the per-mode variance grows as σ2/(1 − λ2
i )≈σ2/[2(1 − λi)] for λi

near 1, the overall disagreement is inversely proportional to the spectral gap δ. A smaller gap (poorly
connected network) slows information mixing and leads to a higher noise floor, while a larger gap
(better connected) keeps nodes more closely synchronized.
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