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Practice Problems

How to use this practice set effectively:

e Start by reviewing your lecture notes and homework solutions to identify weak areas.

e Attempt each problem in this set without referring to the solution first. Treat each as an exam question.
I know it is tough (in fact, it is harder than the actual exam), so view this set as additional reading material.

e After solving, compare your reasoning with the provided solutions—focus not only on the final answer

but also on the step-by-step logic and the role of assumptions.

e For computational questions, practice deriving results by hand; for conceptual or multiple-choice ques-

tions, justify why each incorrect option fails.

e Revisit problems involving eigenvalue geometry, stochastic gradients, or network mixing several days

later—spaced repetition helps retain intuition.

Question 1: Federated Learning: Personalization vs. Global Model

A mobile keyboard app trains next-word prediction via federated learning. Different users type in different
styles (non-IID). You can deploy either a single global model or a global model with lightweight on-device
personalization (e.g., last layer fine-tuning).
Which statement is most accurate?
(a) Personalization helps most when data are IID and harms when data are non-IID.
(b) Personalization helps when data are non-IID by adapting to user-specific patterns with little extra
communication.
(c) Personalization mainly reduces communication cost but usually worsens accuracy on non-IID data.
(d) Personalization is only useful if devices have identical compute and battery profiles.

Correct: (b). Non-lID data benefit from small local adaptations on top of a shared global model, with little
extra bandwidth.

Question 2: Local SGD in a Bandwidth-Limited Setting

In federated training with Local SGD, each device does 7 local updates between communications. You have
a tight uplink budget.

Which statement best describes the trade-off as 7 increases?



(a) Communication cost rises and client drift shrinks.

(b) Communication cost drops, but client drift grows, which hurts final accuracy under data heterogeneity.
(c) Both communication cost and drift grow linearly.

(d) Neither communication cost nor drift is affected by 7.

Correct: (b). Fewer syncs save bandwidth but allow local models to drift further apart on non-11D data.

Question 3: Gradient Compression vs. Convergence in Distributed Training

To save bandwidth, you apply unbiased stochastic quantization with variance parameter w (larger w = fewer
bits). With a fixed wall-clock budget, when is more compression (larger w) most advantageous?

(a) Early training, when gradients are large and faster iteration throughput dominates.

(b) Late training, when gradients are tiny and we aim for the lowest possible variance floor.

(c¢) Equally beneficial early and late.

(d) Never beneficial; unbiased compression always slows convergence.

Correct: (a). Early on, extra iterations from faster communication outweigh the added quantization variance;
later you typically reduce compression to reach a lower error floor.

Question 4: Learning-Rate Schedules Under a Time Budget

You can run only 3 wall-clock hours of training. Which schedule typically gives better accuracy?

(a) Fixed learning rate throughout.

(b) Linear warm-up for a short initial phase, then step decay (reduce the LR by a constant factor at a few
planned times) matched to the allotted time.

(c) Start with an extremely large learning rate and keep it constant.

(d) Decrease the learning rate by a random amount each epoch.

Correct: (b). A brief warm-up avoids early instability (especially with larger batches/initialization), and step
decay lets you take larger steps early and smaller steps later to settle to a lower error—within the same time

budget.

Question 5: Robustness of Gradient Descent to Noise Geometry

This question explores how the curvature of a quadratic function affects the steady-state error of Gradient

Descent (GD) when gradients are noisy.

We consider
f(x)= %XTAX, A»0, Vf(x)=Ax+e,

where Ele] = 0 and Cov(e) = 02A. The GD update is

Xi+1 = X¢ — 776f(xt)-



Linear algebra hint. Any symmetric positive definite matrix A admits an eigendecomposition
A=UAUT,

where U is orthonormal (UTU = I) and A = diag(\y,...,\q) collects the eigenvalues (\; > 0). In these
coordinates, the dynamics in x decouple into d one-dimensional scalar “modes.”

a) Which of the following best explains the purpose of the change of coordinates z; = U ' x;?
(a) g p purp g

(a) It rescales the learning rate to accelerate convergence.

(b) It transforms the multi-dimensional update into independent one-dimensional recursions.
(c) It eliminates gradient noise entirely.

(d) It forces all eigenvalues to become equal.

Answer: (b) Ezplanation: In the eigenbasis of A, each coordinate evolves independently as a scalar
recursion z\”, = (I —n\; @) _ peld the d ics “d le” i t
i1 = i)z, ne; , so the dynamics “decouple” across eigenvectors.

(b) (6 points) In each eigen-direction, the mean update follows zg}l =(1- n)\i)zgi). What is the stability
condition on the stepsize 1 so that GD converges in mean?

(a) 0<n<1/L

(b) 0<n<1/u

() 0<n<2/L

(d) 0<n<2/p

Answer: (c) Ezplanation: The recursion is stable when |1 — n);| < 1 for all eigenvalues, giving the
condition 0 < 7 < 2/Amax = 2/L. If ) exceeds this range, iterates diverge.

(c) (5 points) Suppose the gradient noise covariance aligns with A (i.e., Cov(e) = 02 A). Which statement
best describes the geometry of the steady-state error covariance in x-space?

(a) The error covariance is isotropic (same in all directions).

(b) The error ellipse is elongated along directions of large \; (high curvature).
(¢) The error ellipse is elongated along directions of small A; (flat curvature).
(d) The noise geometry has no influence on the steady-state error.

Answer: (b) Ezplanation: Noise variance in each mode scales with curvature (o A;), so directions with
higher \; exhibit stronger fluctuations, forming an elongated “error ellipse” along steep eigenvectors.

(d) (5 points) Two matrices have identical eigenvalues but different eigenvectors:

A = 10 0 7 Ay = 9.5 4.5 .
0 1 4.5 5.5

If GD starts from xo = [1,1] T, which statement best describes the trajectories?

(a) A;p: Zig-zag along coordinate axes; As: smooth diagonal path.
(b) Aj: Circular path; As: chaotic path.

(¢) Aj: Straight diagonal; As: divergent.

(d) Both produce identical trajectories.



Answer: (a)

Ezplanation: For f(x) = $x" Ax, the level sets f(x) = c are ellipses given by x " Ax = 2c. Their princi-
pal axes are the eigenvectors of A, and the gradient V f(x) = Ax is orthogonal to these ellipses—hence
GD, which moves along —V f(x), always steps perpendicular to the current contour.

For A; = diag(10,1), the eigenvectors coincide with the coordinate axes, so the ellipses are axis-
aligned. The gradient components along x; and o differ greatly: the steep z; direction dominates at
first, pulling the iterate quickly toward the zo axis. Once near the axis, the o component dominates
and reverses direction, leading to alternating updates that appear as a zig-zag trajectory.

For A, the same eigenvalues produce ellipses of the same shape, but rotated by 45°. Its eigenvectors
are [1,1]7/+/2 and [1,—1]T /v/2, and the starting point xo = [1,1] T lies exactly along one eigenvector.
Therefore, each gradient step points along that same diagonal direction, producing a smooth, nearly
straight path to the minimum. The two systems share the same condition number (and thus the same
convergence rate) but exhibit very different trajectory geometries.

Question 6: GD with Model Mis-specification

Consider f(x) = $x' Ax —b'x, but the update uses A=A+A, ie.,

Xi11 = Xg — n(Axt —b). (%)

Hint. Neumann series. For small ||A|, (A+A)~! = A7 - A7TAA=L + 0(]|A]]?).

(a) Express the fixed point X* of the perturbed iteration (x) and its bias X* — x* relative to x* = A~ 1b.

The iteration is linear and converges (for small 1) to the fixed point of x = x — n(Ax — b), i.e.
Ax* =b = x* = (A+A)"'b.
Using the Neumann expansion for small [|[A]l: (A+ A)™! = A1 — A71AA~! + O(]|A]|?). Hence

bias:
X —x = [(A+A) 7 =AY bx —AT'AA D,

(b) Give a sufficient condition on (7, ||Al]) for convergence of the iteration and bounded bias.

Convergence requires the spectral radius of I — 17/1 to be
p(I —nd) <1
a sufficient condition is 0 < 77 < 2/||A||. If A = 0 and ||A]| < Amin(A), then
A0 and A] < Al + 1Al

Thus choose
n <2/(1All + [IA]).




Bounded bias follows from (A + A)~! existing and the first-order estimate above:

I%* = x| S IATHPIA] - [[b].

(c) Discuss why ill-conditioning (e.g., Amin(A) is very small) magnifies solution bias even for small ||A||.

Because ||[A7!|| = 1/Amin(A) is large for ill-conditioned A, the first-order bias [|A"'AA~1b|| scales
like [|A=1]|?]|A[|||b]|, hence small model error causes large solution bias.

Question 7: GD with Random Step Perturbations

This problem explores how small randomness in the stepsize affects Gradient Descent (GD) on a quadratic.
Let 1, = n(1 + ¢) with i.i.d. ¢ satisfying E[e,] = 0 and Var(e;) = 72 < 1. Consider f(x) = 3 x' Ax with
A > 0, and the update x;41 = x; — N Ax;.

(a) Derive how stepsize randomness changes the expected squared distance compared with deterministic
GD. Express your result using the eigenvalues \; of A.

In the eigen-basis, z; = UTx; and each scalar mode evolves as
z&)l = (1 —n(l+ et))\i) zt(i).
Then ) . ;
E[(=(01)2] = E[(1 = nh = nhier)?] ()2 = [(1 = mi)? + 22372 (2472,

2

Versus deterministic GD (factor (1 — n\;)?), random steps add the term 72?72, so the expected

squared distance decreases more slowly.

(b) Qualitatively, when does stepsize randomness have a significant effect, and when can it be ignored?

The extra term 72\272 is largest for steep directions (large )\;) and for larger 7, so randomness matters
when 7 is near its usual upper range or the problem is ill-conditioned. If 72 is tiny and n)\; < 1 for all
1, the effect is negligible and behavior is close to fixed-step GD.

(¢) For A = diag(1,100) and n = 0.01, compare qualitatively the effect of 7 = 0, 0.05, 0.1 on progress
along each coordinate.

Mode A1 = 1: (1 —nA1)? + 7n?A\272 = (0.99)? + 1?72, so the impact is small even when 7 grows.
Mode Ay = 100: the factor (1 — 1)2 + 7%-100%72 = n?10%*72 grows quickly with 7, causing noisy,
slower progress in the steep direction. Thus 7 = 0 behaves cleanly; 7 = 0.05 shows visible slow-down
in the Ay mode; 7 = 0.1 makes that mode markedly noisier.




Question 8: Optimal Mini-batch under a Fixed Time Budget

In mini-batch stochastic gradient descent (SGD), each update uses a random batch of B samples. Larger
batches produce more accurate gradient estimates (smaller variance) but are slower to compute. Smaller
batches allow more updates per unit time but introduce higher gradient noise. This question examines how

to choose B when total computation time is limited.
Setup. Assume that one mini-batch SGD step with batch size B takes
Citer(B) = ¢p + ¢1 B units of time,

where ¢ is fixed overhead (e.g., setup and synchronization) and ¢; B accounts for the cost of processing
B samples. The total available training time is 7', so the number of updates that can be performed is

approximately
T T
N =~ = .
Citer(B)  co+ 1B

For sufficiently small learning rate 7, the expected suboptimality after N steps can be approximated by

no?
B(N.B)~ a(l-9)" + 7
N——

optimization term .
noise floor

2

where: - a and ~ describe the convergence speed of the noiseless dynamics; - 0 measures gradient variance;

-p %2 represents the steady-state noise floor, which decreases as B increases.
This captures the trade-off: smaller B = more iterations (larger V) but noisier updates; larger B = fewer

updates but lower variance.

(a) Formulate the optimization problem for selecting B that minimizes E(N, B) given T, cg, c1, and o2.

Substitute N = T/(co + ¢1B) into E(N, B) to get

T/(co+c1B) 770'2
3 CcoTC1

The first term decreases with smaller B (more steps), while the second decreases with larger B (less
variance), illustrating the fundamental computation—variance trade-off.

(b) How does the optimal batch size B* qualitatively vary with 2, total time T, and the ratio c;/cq?

B* increases with higher o2 (noisier gradients make larger batches worthwhile), with longer total time
T (more time allows the benefit of variance reduction to accumulate), and decreases when ¢ /cg is
large (high per-sample cost discourages large batches).

(¢) Under what conditions is B = 1 (single-sample updates) close to optimal? Explain intuitively.

When the fixed overhead ¢; dominates the computation cost (so each update is relatively cheap) and
the optimization term (1 — )" dominates the noise floor (early in training or when the variance is
modest), small batches are efficient. In this regime, B = 1 provides many quick, noisy updates that
still yield fast initial progress.




Question 9: Importance Sampling for SGD

In standard stochastic gradient descent (SGD), at each iteration, we randomly select one data sample ¢ (or
a small batch) and compute its gradient V f;(x) as an unbiased estimate of the full gradient

1 n
= ; V fi(x)

Uniform sampling (p; = 1/n) treats all samples equally, but not all samples contribute equally to the variance
of the stochastic gradient. If some gradients are much larger than others, it can be more efficient to sample
them more often.

To formalize this, consider the importance-sampling variant of SGD: at each step, select index i € {1,...,n}
with probability p; > 0 (where ), p; = 1) and compute

g = Vf1 (X)

np;

This weighting ensures the estimator remains unbiased even when sampling is non-uniform.

(a) Show that g is an unbiased estimator of the true gradient V f(x), and write an explicit expression for

its variance.

Unbiasedness:
szivfz vaz - ( )

Variance: )

Var(g) = E[|lg — V f(x sz n—sz —fZVfJ

(b) Explain how choosing probabilities p; proportional to |V f;(x)| can reduce variance compared with

uniform sampling. (You may assume ||V f;(x)|| are known.)

A convenient upper bound on the variance is

n

> IVAGIP - VG

i=1
Minimizing the first term subject to ). p; = 1 gives (by Cauchy-Schwarz)
o [V fi(x)]]-

This choice samples larger gradients more frequently, balancing their contribution to total variance.
Compared with uniform p; = 1/n, it never increases variance and typically decreases it significantly
when gradient magnitudes vary widely.

(¢) In large-scale or deep-learning settings, it is often expensive to compute ||V f;(x)|| for all samples.
Discuss practical ways to approximate or implement importance sampling in such systems.



Common strategies include:

— Using stale gradient norms from recent iterations instead of recomputing them each step;

— Using the per-example loss f;(x) as a proxy for ||V f;(x)];

— Performing stratified sampling by class or cluster to ensure balanced coverage;

— Approximating at coarser granularity, e.g., layer-wise or block-wise gradient norms in deep models;
— Periodically refreshing the sampling distribution p; to reduce overhead.

These heuristics preserve most of the variance-reduction benefits while keeping computation manage-
able.

Question 10: Optimal Mixing Step on a 3-Node Path

In distributed averaging or consensus algorithms, each node updates its value by mixing with its neighbors.
Let W denote the mizing matriz, defined as

W=1-alL,

where L is the graph Laplacian and a > 0 is the mixing stepsize controlling how strongly nodes average with
their neighbors.

The convergence rate of the consensus process

depends on the spectral properties of W: the largest P3: 3-node path graph
eigenvalue is 1 (corresponding to the consensus sub-
space), and the second-largest eigenvalue magnitude po(W) determines the asymptotic convergence speed:

e — || = p2(W)".
Smaller po(WW) means faster averaging (shorter mixing time).

We consider a simple 3-node path graph (nodes 1-2-3) and aim to choose « to minimize po(W).

(a) Write down the Laplacian L, compute the eigenvalues of the Laplacian L and then the eigenvalues of
W =1 — alL in terms of a.

For the 3-node path, the Laplacian is

which has eigenvalues {0, 1,3}. Therefore W = I — oL has eigenvalues

{1,1—a, 1-3a}.

(b) Find the value o* that minimizes the second-largest eigenvalue magnitude max{|l1 — «/|, |1 — 3|}, and
compute the corresponding convergence rate.



To minimize the maximum magnitude, set |1 — a| = |1 — 3a, giving @ = 1. Then the nontrivial
eigenvalues are 1 — % = % and 1 — 3% = f%. Hence the second-largest eigenvalue magnitude (SLEM)

is po (W) = % The asymptotic contraction per step is therefore 0.5.

Question 11: Heterogeneity and Slow Mixing in Decentralized SGD

Decentralized SGD replaces global averaging with local message passing among neighbors:

ot =N Wi el =0 Vfi(ah),
JEN;
where W is a mixing matrix satisfying W1 = 1, 7 is the stepsize, and each node i holds a local objective
fi(z). When data are heterogeneous (local optima differ) and communication is infrequent (poorly connected
network), the nodes can drift apart, leading to oscillation or even divergence if 7 is too large.

This problem asks you to construct a minimal counterexample illustrating this effect.

(a) Construct a minimal example (network topology, local objectives, and stepsize choice) where decen-
tralized SGD fails to converge because of strong heterogeneity and weak mixing. Clearly state your
setup and explain the mechanism behind divergence.

Setup: Consider two nodes (1 and 2) connected by a single edge with a small mixing weight o < 1:

W:(la o )
« 11—«

Let the local objectives be strongly conflicting:
file) =g -17%  folz) = 3@ +1)%

Then the local minimizers differ by 2. With a large stepsize 1, each node moves aggressively toward
its own minimizer before sufficient mixing occurs. Because W exchanges information slowly, the two
nodes repeatedly “overshoot” in opposite directions, producing oscillations or even divergence in their
disagreement x; — zs.

(b) Suggest one or more strategies to restore convergence and justify why they work.

Possible remedies include:

— Reduce the stepsize 7: smaller updates limit local overshoot, giving mixing more time to reconcile
nodes before they drift apart.

— Improve connectivity: increase the spectral gap of W (e.g., larger « or adding links) to accelerate
information averaging.

— Periodic global averaging: occasionally synchronize all nodes (hybrid decentralized/federated
approach) to reset accumulated disagreement.

Each mitigation strengthens the coupling between nodes relative to their local drift, stabilizing the
dynamics.




(¢) In practice, how can one detect that such instability is occurring during training? What empirical
signals would indicate a poorly tuned decentralized system?

Typical warning signs include:

— Rapidly growing disagreement >, [lz; — Z||* between nodes;
— Oscillating or divergent local losses despite bounded gradients;
— Sensitivity: a small increase in 7 causes training to diverge;

— Network-wide quantities (e.g., averaged loss) fluctuate without settling.

Such behaviors indicate that the combination of large 1 and small spectral gap (slow mixing) makes
the decentralized updates unstable.

Question 12: Choosing Local Steps 7 under Time and Heterogeneity

In federated / local-SGD style training, each communication round performs 7 local gradient steps before
synchronizing across clients. Let the per-round wall time be

T(T) = T Ccomp + Ccomm ,
—— ——
local compute communication

so the number of rounds in time budget T is approximately N(7) ~ T/T (7). A stylized expected error model
that separates optimization progress, SGD noise, and client-drift effects is

A C
E(r) =~ — + Bn o? + = + Dr ’
n N(T) ~—— T ~
N—— SGD noise floor V" heterogeneity (drift) penalty

optimization term mini-batch variance reduction

where A, B,C, D > 0 are problem-dependent constants and 7 is the stepsize (assumed fixed here). This
captures the trade-off: increasing 7 reduces communication and the C'/7 term, but increases round time and
the drift term Dr.

(a) Give qualitative guidelines for the choice of 7 in the two regimes: (i) Ccomm > Coomp (cOmmunication-
dominated), and (ii) ccomm < Coomp (compute-dominated).

(i) Communication-dominated ccomm > Ccomp- Since each round is expensive to communicate,
using a larger T amortizes ccomm over more local work: T'(T) & TCcomp + Ccomm decreases relative
round-overhead as 7 increases. Increasing 7 also shrinks C'/7. However, too large 7 inflates the
drift penalty D7. Guideline: increase 7 until the marginal drift cost D7 begins to outweigh the
communication savings; keep 7 where C'/7 and Dt are balanced.

(ii) Compute-dominated ccomm < Ccomp- Here T(T) & TCeomp, SO increasing 7 reduces the number
of rounds nearly inversely and slows optimization progress. Moreover, large 7 increases drift (D7)
while providing diminishing gains in C/7. Guideline: prefer smaller T to keep rounds frequent and drift
small; only increase 7 if C/7 clearly dominates other terms.

AT
(b) Treating 7 as continuous, differentiate the smooth surrogate F(71) = — ;T)
n

N(1) =T/T(7)) and give the interior optimality condition when it exists.

C
+ Bno® + = + Dr (using
T

10



Using T(T) = TCcomp + Ccomm. the surrogate becomes

~ A chomp Jr Ccomm

C
E(r) =~ Bno? + = + Dr.
(1) ; T + Bno® + = + Dt

Differentiating (ignoring constants independent of 7):

dE Accomp C

— = - = D.
dr nT T2 +
An interior minimizer satisfies
C A Coomp C
= — D ——t * =
= o T \/ Aceomp/(T) + D

provided the right-hand side is positive. This shows 7* increases when communication/optimization
pressure is high (small Accomp/(nT") and small D), and decreases as heterogeneity D grows.

(¢) How does stronger client heterogeneity (non-IID data) affect the optimal 77

Heterogeneity increases the drift penalty D (local models diverge more during unsynchronized steps).

From 7* = \/C’/ (Accomp/(nT) + D), increasing D decreases T*. Interpretation: with more hetero-
geneity, synchronize more frequently (smaller ) to limit drift.

Question 13: (ECE 7290 only) Unbiased Quantization in SGD
Suppose gradients are compressed by an unbiased operator Q with
E[Q(9)] =9,  E[IQ(9) —gl*] <wllgl*.

for some w > 0 that increases as fewer bits are used (larger compression). Assume f is L-smooth and
(optionally) p-strongly convex; we use mini-batch size B so the baseline gradient noise is 02/ B.

(a) Modify a canonical SGD recursion to include quantization and identify the additional variance term
in a standard expected-suboptimality bound.

A single SGD step with compressed stochastic gradient g, is

T = 2 — nQ(g:), Elg: |z¢) = Vf(zy), Ellge — Vf(z0)|* <0*/B.

Decompose Q(g:) = g¢ + 6 with E[§; | g:] = 0 and E||6¢]> < w]|g¢]|*>. In the usual smooth/strongly-
convex analysis, the steady-state (noise-floor) term is proportional to the total variance entering the
update. Thus, compared to baseline variance 02/ B, quantization adds an extra component

’ extra variance ~ wE||g|> ~ wE|V f(z,)|? ‘

(the last approximation uses that mini-batch noise vanishes near the optimum). A stylized bound for

11




u-strongly convex f is

2
B~ ] S (=)' Co + 3 (G + wEIVI@IR).

showing the new variance contribution scales with w and the local gradient magnitude.

(b) Discuss the trade-off between fewer bits (larger w) and more iterations within a fixed time budget.

Fewer bits reduce communication time per iteration, allowing more iterations in a fixed wall time,
improving the optimization term. However, larger w increases the variance floor via wE||V f(x)]|?.
Trade-off: when far from the optimum (large gradients), the added quantization noise is relatively
small in relative terms and faster iterations can dominate; near the optimum (small gradients), the
quantization noise can dominate and limit accuracy. Hence, aggressive compression is best early; later,
one should reduce w (more bits) to reach a lower error floor.

(¢) Which regime tolerates quantization best?

(i) Near the optimum (small gradients),

(ii) Far from the optimum (large gradients).

Answer: (ii) Far from the optimum.

When gradients are large, the relative impact of the quantization error (bounded by w/|g||?) is smaller
compared to the signal scale, and the speedup from reduced communication is most useful. Near
the optimum, ||V f(z:)|| is small but the added quantization term can dominate the variance floor,

preventing further progress.

Question 14: (ECE 7290 only) Heavy-Ball Method and Its Stability Region

Momentum methods accelerate gradient descent by adding an extra term that reuses previous steps to gain

inertia. For a quadratic objective

flx) = %XTAX, A >0, spectrum [u, L],

consider the heavy-ball update
X1 = X¢ — 0 AXy + B(x — x¢-1),
where 1 > 0 is the stepsize and 8 € [0,1) is the momentum parameter.

Intuitively, the term 8(x; — x;—1) pushes the iterate further along its previous motion direction. This can
speed up convergence if tuned well, but can also cause oscillation or divergence if n or S are too large. The
goal of this problem is to analyze when the iterates x; converge for quadratic functions—i.e., to find the

stability region in the (1, 8) plane.

(a) Because A is symmetric positive definite, it can be diagonalized as A = UAUT. Explain why this
transformation allows us to study the update one coordinate (eigen-direction) at a time, and write the

resulting 1D recursion.

12



In the eigenbasis of A, z; = U x, evolves independently along each eigen-direction. For eigenvalue
\;, the scalar variable zt(l) satisfies

2D =1+ 8- 2 - 82,

Thus, instead of analyzing a d-dimensional system, we can study d separate 1D recursions.

(b) The stability of this recursion depends on how errors evolve over time. The characteristic polyno-
mial captures this evolution by describing how z; depends on its past values: for a linear recurrence
Zi+1 = azy + bzy_1, the characteristic polynomial is r? —ar —b = 0. Its roots 1,72 describe how errors
decay or oscillate (stable if |rq],|r2| < 1).

Write the characteristic polynomial for the heavy-ball update above and explain qualitatively what
determines stability.

Substituting a =1+ 8 — n\; and b = —f gives
r? —(L+ 8 —n\)r+ 8 =0.

The two roots 712 describe how the error along that eigen-direction evolves. The method is stable
if both |r1 2] < 1 (errors shrink each step). Large n or S make |r| approach or exceed 1, causing
oscillation or divergence.

(¢) Using your scalar recursion, determine roughly how the stability region depends on 7, 3, and the largest
eigenvalue L of A. In particular, describe the range of n that keeps the updates stable.

For a single eigenvalue A, the heavy-ball update
i1 =L+ B =Xz — friq
is stable if both characteristic roots of
2 —(1+B8-n\r+8=0
lie inside the unit circle (]| < 1). Applying a standard discrete-time stability test gives
1Bl<1, 1-(1+B8-n\)+B>0, 1+(1+B-nA)+p>0.

Simplifying these inequalities yields
0<nA<2(1+5).

To ensure convergence for all eigenvalues A\ € [u, L], this must hold for the largest one, giving the
rough stability rule:

214+ 5)

0 0 1.
<n< T <pB<

When 8 = 0, this reduces to the standard condition for gradient descent < 2/L.

13



Question 15: (ECE 7290 only) Heavy-Ball Method under Gradient Noise

In stochastic optimization, gradient noise prevents exact convergence even for convex quadratic problems.
Momentum can speed up optimization in noiseless settings but may also amplify stochastic fluctuations.
This question compares how plain GD and the heavy-ball momentum method behave under additive noise.

Setup. Consider the 1D quadratic model
fla) = 3aa,

— 2

and assume each gradient evaluation is corrupted by additive noise:
gi = \vy +¢e1, Elee] =0, Var(e) = o>
The GD and momentum updates are
GD: z411 =z — ngy, Momentum: x¢41 = x; — ngr + Bz — T1—1),

where 7 is the stepsize and 8 € [0, 1) is the momentum parameter.

We are interested in how noise accumulates in the steady state—that is, the long-run expected value of
E[x?] once transient effects vanish.

(a) For the scalar model above, derive how momentum changes the mapping from gradient noise &; to
parameter fluctuations x;. Express qualitatively (or quantitatively, if possible) how the steady-state
variance scales with (.

Starting from
i1 = (14 8 —nN)ay — Bri—1 — ney, Ele;] =0, Var(e;) = o2,

each update depends on both x; and z;_;.

Tt
St =
Tt—1
the second-order recursion (because it involves two past iterates) can be written as
-1
0

Let ¥ = lim; oo E[ststT] denote this steady-state covariance. From the recursion s;11 = Asy + Bey,
taking the outer product and expectation gives

To analyze it, define the 2D state vector

1+8—mA —p

st41 = Asy + Bey, A= 1 0

, B=

]E[St+18;r+1] = E[(Ast + BEt)(ASt + BEt)T:I .
Because the gradient noise ¢; is zero-mean and independent of s;, the cross terms vanish, leaving
Elsi+18,,1) = AE[s;s, ] AT + E[¢}] BB

At steady state, & = lim;_, o, E[s;s, | satisfies ¥ = AXAT +0?BBT. Solving yields

no?(1+ )

Varled = Sa =g 1 28 — )
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When the learning rate 7 is small, the term n\ in the denominator of the exact formula

no®(1+ )
A1 =B)(2+28—-n))

is much smaller than the constants 2+23. Neglecting it (a standard first-order approximation) simplifies
the expression to

Var(z:) =

2
Var(z;) =~ ﬁ.

This approximation reveals two important behaviors:

— The variance grows linearly with the learning rate 1 and the noise level o2, as in ordinary stochastic
gradient descent.

— The extra factor ﬁ shows how momentum amplifies noise: as [3 increases toward 1, this factor
becomes large, meaning the iterates fluctuate more due to accumulated noise.

For example, if 5 = 0.9, then ﬁ ~ 5.3, so the steady-state variance is over five times larger than
that of plain gradient descent (8 = 0). In short, higher momentum accelerates convergence in noiseless
problems but can substantially increase variability when gradients are noisy.

(b) Explain qualitatively when momentum improves and when it degrades performance.

Momentum helps when deterministic convergence speed is the bottleneck—i.e., in ill-conditioned, low-
noise problems where curvature varies strongly across directions. It accelerates slow modes without
significantly increasing variance. However, in high-noise regimes the ﬁ amplification dominates,
causing noisy oscillations and higher steady-state error. Thus momentum trades faster transient decay
for greater steady-state variance.

(¢) The impact of noise on the optimization dynamics depends on the noise-to-signal ratio, roughly mea-
sured by 02/(A?z?) or by the steady-state noise level no?/\. Use this idea to reason about when
momentum is helpful or harmful in the following cases:

(i) Tl-conditioned, low-noise problems (large condition number, small o2);
(ii) Well-conditioned, high-noise problems (small condition number, large o2);

(iii) Ill-conditioned, moderate-noise problems.

Option (iii) typically offers the best trade-off, while (i) also benefits. In (ii), noise dominates, so
momentum's amplification is harmful. In (iii), momentum accelerates slow curvature directions (helping
ill-conditioned problems) while noise remains moderate enough that the amplification factor ﬁ
does not overwhelm the gains.

Question 16: (ECE 7290 only) Noisy Consensus Steady State

Consider the linear consensus iteration with additive noise

M =wxk ek E[gF] =0, Cov(eF) =21,
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where W € R™*" is a symmetric, doubly-stochastic mixing matrix: W1 =1and W =W . Let J := %11—'—
be the projector onto the consensus subspace and P := I —J the projector onto the disagreement (mean-zero)
subspace. Write the average z* := %lTxk and the disagreement vector y* := Px*.

Remark. Because A1(W) = 1, the network average follows a random walk under additive noise; a steady
state exists only for the disagreement part y*.

(a) Show that the network average is preserved in expectation but the disagreement exhibits a nonzero
variance floor. Derive the recursion for the disagreement covariance ¥ := E[y*(y*) "] and the equation
that the covariance ¥ := limy_,oo E[y*(y*) "] should satisfy at the steady state.

Taking expectations,
Ex"' = WEX"] = E[z"t'] = L1TE[x""] = L1TWE[x"] = E[z"],
so the average is preserved in expectation.
For disagreement y* = Px*, note PW = WP (since W1 = 1 and W is symmetric), hence
yhtl = pxktl — pixk 4 pgk = wyk 4 pgk.
With E[¢¥] = 0 and independence across time, the disagreement covariance ¥* := E[y*(y*) "] obeys
YL — WerW T 4 E[PER(EF)T P = WEFW + o2 P.

If [X\i(W)| <1 fori> 2, then X¥ converges to the unique solution of the following equation

| S=WEW +s°P |

which yields a nonzero variance floor on the disagreement subspace.

(b) In the noisy consensus iteration
xFL = wxk + ¢~ E[gF] =0, Cov(€") = 0?1,

suppose W is symmetric and doubly stochastic with eigenvalues 1 = Ay > Ay > -+ > X\, > —1. At
steady state, how does the disagreement variance in each eigenmode i > 2 depend on \;?

Hint: Since y*+1 = Wy* 4+ P¢&* . in the eigenbasis of W, each mode i evolves as yf“ = \iyF + ¢k,
Eu =
(a) Y
2
= o
b Y =
(b) 2 =%

(c) T =0"(1- A7)

(d) Eii = 02/\12

Correct answer: (b). In the eigenbasis of W, each mode evolves as y*™' = \jy¥ + ¢, so the

steady-state variance satisfies E[y2] = A\2E[y2] + o2. Solving gives ©;; = 02/(1 — A2) for i > 2.

16



(c) How does the spectral gap 6 := 1 — max;>2 |A;(W)]| affect the steady-state level of disagreement across
the network?

(a) A larger spectral gap leads to more steady-state disagreement.

(b) A smaller spectral gap leads to less steady-state disagreement.

(¢) The steady-state disagreement variance is roughly proportional to 1/4, so smaller gaps (weaker
connectivity) yield larger disagreement.

(d) The spectral gap does not affect disagreement in steady state.

Correct answer: (c). Because the per-mode variance grows as 02/(1 — A\2) =02 /[2(1 — \;)] for \;
near 1, the overall disagreement is inversely proportional to the spectral gap §. A smaller gap (poorly
connected network) slows information mixing and leads to a higher noise floor, while a larger gap
(better connected) keeps nodes more closely synchronized.
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