
[Fall 2025] ECE 5290/7290 and ORIE 5290
Distributed Optimization for Machine Learning and AI

Practice Problems

How to use this practice set effectively:

• Start by reviewing your lecture notes and homework solutions to identify weak areas.

• Attempt each problem in this set without referring to the solution first. Treat each as an exam question.

I know it is tough (in fact, it is harder than the actual exam), so view this set as additional reading material.

• After solving, compare your reasoning with the provided solutions—focus not only on the final answer

but also on the step-by-step logic and the role of assumptions.

• For computational questions, practice deriving results by hand; for conceptual or multiple-choice ques-

tions, justify why each incorrect option fails.

• Revisit problems involving eigenvalue geometry, stochastic gradients, or network mixing several days

later—spaced repetition helps retain intuition.

Question 1: Federated Learning: Personalization vs. Global Model

A mobile keyboard app trains next-word prediction via federated learning. Different users type in different

styles (non-IID). You can deploy either a single global model or a global model with lightweight on-device

personalization (e.g., last layer fine-tuning).

Which statement is most accurate?

(a) Personalization helps most when data are IID and harms when data are non-IID.

(b) Personalization helps when data are non-IID by adapting to user-specific patterns with little extra

communication.

(c) Personalization mainly reduces communication cost but usually worsens accuracy on non-IID data.

(d) Personalization is only useful if devices have identical compute and battery profiles.

Question 2: Local SGD in a Bandwidth-Limited Setting

In federated training with Local SGD, each device does τ local updates between communications. You have

a tight uplink budget.
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Which statement best describes the trade-off as τ increases?

(a) Communication cost rises and client drift shrinks.

(b) Communication cost drops, but client drift grows, which hurts final accuracy under data heterogeneity.

(c) Both communication cost and drift grow linearly.

(d) Neither communication cost nor drift is affected by τ .

Question 3: Gradient Compression vs. Convergence in Distributed Training

To save bandwidth, you apply unbiased stochastic quantization with variance parameter ω (larger ω = fewer

bits). With a fixed wall-clock budget, when is more compression (larger ω) most advantageous?

(a) Early training, when gradients are large and faster iteration throughput dominates.

(b) Late training, when gradients are tiny and we aim for the lowest possible variance floor.

(c) Equally beneficial early and late.

(d) Never beneficial; unbiased compression always slows convergence.

Question 4: Learning-Rate Schedules Under a Time Budget

You can run only 3 wall-clock hours of training. Which schedule typically gives better accuracy?

(a) Fixed learning rate throughout.

(b) Linear warm-up for a short initial phase, then step decay (reduce the LR by a constant factor at a few

planned times) matched to the allotted time.

(c) Start with an extremely large learning rate and keep it constant.

(d) Decrease the learning rate by a random amount each epoch.
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Question 5: Robustness of Gradient Descent to Noise Geometry

This question explores how the curvature of a quadratic function affects the steady-state error of Gradient

Descent (GD) when gradients are noisy.

We consider

f(x) = 1
2x

⊤Ax, A ≻ 0, ∇̂f(x) = Ax+ ε,

where E[ε] = 0 and Cov(ε) = σ2A. The GD update is

xt+1 = xt − η ∇̂f(xt).

Linear algebra hint. Any symmetric positive definite matrix A admits an eigendecomposition

A = UΛU⊤,

where U is orthonormal (U⊤U = I) and Λ = diag(λ1, . . . , λd) collects the eigenvalues (λi > 0). In these

coordinates, the dynamics in x decouple into d one-dimensional scalar “modes.”

(a) Which of the following best explains the purpose of the change of coordinates zt = U⊤xt?

(a) It rescales the learning rate to accelerate convergence.

(b) It transforms the multi-dimensional update into independent one-dimensional recursions.

(c) It eliminates gradient noise entirely.

(d) It forces all eigenvalues to become equal.

Answer: (b) Explanation: In the eigenbasis of A, each coordinate evolves independently as a scalar

recursion z
(i)
t+1 = (1− ηλi)z

(i)
t − ηε

(i)
t , so the dynamics “decouple” across eigenvectors.

(b) (6 points) In each eigen-direction, the mean update follows z
(i)
t+1 = (1− ηλi)z

(i)
t . What is the stability

condition on the stepsize η so that GD converges in mean?

(a) 0 < η < 1/L

(b) 0 < η < 1/µ

(c) 0 < η < 2/L

(d) 0 < η < 2/µ

Answer: (c) Explanation: The recursion is stable when |1 − ηλi| < 1 for all eigenvalues, giving the

condition 0 < η < 2/λmax = 2/L. If η exceeds this range, iterates diverge.

(c) (5 points) Suppose the gradient noise covariance aligns with A (i.e., Cov(ε) = σ2A). Which statement

best describes the geometry of the steady-state error covariance in x-space?

(a) The error covariance is isotropic (same in all directions).

(b) The error ellipse is elongated along directions of large λi (high curvature).

(c) The error ellipse is elongated along directions of small λi (flat curvature).

(d) The noise geometry has no influence on the steady-state error.

Answer: (b) Explanation: Noise variance in each mode scales with curvature (∝ λi), so directions with

higher λi exhibit stronger fluctuations, forming an elongated “error ellipse” along steep eigenvectors.

(d) (5 points) Two matrices have identical eigenvalues but different eigenvectors:

A1 =

(
10 0

0 1

)
, A2 =

(
5.5 4.5

4.5 5.5

)
.
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If GD starts from x0 = [1, 1]⊤, which statement best describes the trajectories?

(a) A1: Zig-zag along coordinate axes; A2: smooth diagonal path.

(b) A1: Circular path; A2: chaotic path.

(c) A1: Straight diagonal; A2: divergent.

(d) Both produce identical trajectories.

Answer: (a)

Explanation: For f(x) = 1
2x

⊤Ax, the level sets f(x) = c are ellipses given by x⊤Ax = 2c. Their princi-

pal axes are the eigenvectors of A, and the gradient ∇f(x) = Ax is orthogonal to these ellipses—hence

GD, which moves along −∇f(x), always steps perpendicular to the current contour.

For A1 = diag(10, 1), the eigenvectors coincide with the coordinate axes, so the ellipses are axis-

aligned. The gradient components along x1 and x2 differ greatly: the steep x1 direction dominates at

first, pulling the iterate quickly toward the x2 axis. Once near the axis, the x2 component dominates

and reverses direction, leading to alternating updates that appear as a zig-zag trajectory.

For A2, the same eigenvalues produce ellipses of the same shape, but rotated by 45◦. Its eigenvectors

are [1, 1]⊤/
√
2 and [1,−1]⊤/

√
2, and the starting point x0 = [1, 1]⊤ lies exactly along one eigenvector.

Therefore, each gradient step points along that same diagonal direction, producing a smooth, nearly

straight path to the minimum. The two systems share the same condition number (and thus the same

convergence rate) but exhibit very different trajectory geometries.

Question 6: GD with Model Mis-specification

Consider f(x) = 1
2x

⊤Ax− b⊤x, but the update uses Ã = A+∆, i.e.,

xt+1 = xt − η(Ãxt − b). (⋆)

Hint. Neumann series. For small ∥∆∥, (A+∆)−1 = A−1 −A−1∆A−1 +O(∥∆∥2).

(a) Express the fixed point x̃⋆ of the perturbed iteration (⋆) and its bias x̃⋆ − x⋆ relative to x⋆ = A−1b.

(b) Give a sufficient condition on (η, ∥∆∥) for convergence of the iteration and bounded bias.

(c) Discuss why ill-conditioning (e.g., λmin(A) is very small) magnifies solution bias even for small ∥∆∥.
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Question 7: GD with Random Step Perturbations

This problem explores how small randomness in the stepsize affects Gradient Descent (GD) on a quadratic.

Let ηt = η(1 + ϵt) with i.i.d. ϵt satisfying E[ϵt] = 0 and Var(ϵt) = τ2 ≪ 1. Consider f(x) = 1
2 x

⊤Ax with

A ≻ 0, and the update xt+1 = xt − ηtAxt.

(a) Derive how stepsize randomness changes the expected squared distance compared with deterministic

GD. Express your result using the eigenvalues λi of A.

(b) Qualitatively, when does stepsize randomness have a significant effect, and when can it be ignored?

(c) For A = diag(1, 100) and η = 0.01, compare qualitatively the effect of τ = 0, 0.05, 0.1 on progress

along each coordinate.

Question 8: Optimal Mini-batch under a Fixed Time Budget

In mini-batch stochastic gradient descent (SGD), each update uses a random batch of B samples. Larger

batches produce more accurate gradient estimates (smaller variance) but are slower to compute. Smaller

batches allow more updates per unit time but introduce higher gradient noise. This question examines how

to choose B when total computation time is limited.
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Setup. Assume that one mini-batch SGD step with batch size B takes

citer(B) = c0 + c1B units of time,

where c0 is fixed overhead (e.g., setup and synchronization) and c1B accounts for the cost of processing

B samples. The total available training time is T , so the number of updates that can be performed is

approximately

N ≈ T

citer(B)
=

T

c0 + c1B
.

For sufficiently small learning rate η, the expected suboptimality after N steps can be approximated by

E(N,B) ≈ α(1− γ)N︸ ︷︷ ︸
optimization term

+ β
ησ2

B︸ ︷︷ ︸
noise floor

,

where: - α and γ describe the convergence speed of the noiseless dynamics; - σ2 measures gradient variance;

- β ησ2

B represents the steady-state noise floor, which decreases as B increases.

This captures the trade-off: smaller B ⇒ more iterations (larger N) but noisier updates; larger B ⇒ fewer

updates but lower variance.

(a) Formulate the optimization problem for selecting B that minimizes E(N,B) given T , c0, c1, and σ2.

(b) How does the optimal batch size B⋆ qualitatively vary with σ2, total time T , and the ratio c1/c0?

(c) Under what conditions is B = 1 (single-sample updates) close to optimal? Explain intuitively.

Question 9: Importance Sampling for SGD

In standard stochastic gradient descent (SGD), at each iteration, we randomly select one data sample i (or

a small batch) and compute its gradient ∇fi(x) as an unbiased estimate of the full gradient

∇f(x) =
1

n

n∑
i=1

∇fi(x).
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Uniform sampling (pi = 1/n) treats all samples equally, but not all samples contribute equally to the variance

of the stochastic gradient. If some gradients are much larger than others, it can be more efficient to sample

them more often.

To formalize this, consider the importance-sampling variant of SGD: at each step, select index i ∈ {1, . . . , n}
with probability pi > 0 (where

∑
i pi = 1) and compute

g =
1

npi
∇fi(x).

This weighting ensures the estimator remains unbiased even when sampling is non-uniform.

(a) Show that g is an unbiased estimator of the true gradient ∇f(x), and write an explicit expression for

its variance.

(b) Explain how choosing probabilities pi proportional to ∥∇fi(x)∥ can reduce variance compared with

uniform sampling. (You may assume ∥∇fi(x)∥ are known.)

(c) In large-scale or deep-learning settings, it is often expensive to compute ∥∇fi(x)∥ for all samples.

Discuss practical ways to approximate or implement importance sampling in such systems.

Question 10: Optimal Mixing Step on a 3-Node Path

In distributed averaging or consensus algorithms, each node updates its value by mixing with its neighbors.

Let W denote the mixing matrix, defined as

W = I − αL,

where L is the graph Laplacian and α > 0 is the mixing stepsize controlling how strongly nodes average with

their neighbors.
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1 2 3

P3: 3-node path graph

The convergence rate of the consensus process

xt+1 = Wxt

depends on the spectral properties of W : the largest

eigenvalue is 1 (corresponding to the consensus subspace), and the second-largest eigenvalue magnitude

ρ2(W ) determines the asymptotic convergence speed:

∥xt − x̄∥ ≈ ρ2(W )t.

Smaller ρ2(W ) means faster averaging (shorter mixing time).

We consider a simple 3-node path graph (nodes 1–2–3) and aim to choose α to minimize ρ2(W ).

(a) Write down the Laplacian L, compute the eigenvalues of the Laplacian L and then the eigenvalues of

W = I − αL in terms of α.

(b) Find the value α⋆ that minimizes the second-largest eigenvalue magnitude max{|1− α|, |1− 3α|}, and
compute the corresponding convergence rate.

Question 11: Heterogeneity and Slow Mixing in Decentralized SGD

Decentralized SGD replaces global averaging with local message passing among neighbors:

xk+1
i =

∑
j∈Ni

Wij x
k
j − η∇fi(x

k
i ),

where W is a mixing matrix satisfying W1 = 1, η is the stepsize, and each node i holds a local objective

fi(x). When data are heterogeneous (local optima differ) and communication is infrequent (poorly connected

network), the nodes can drift apart, leading to oscillation or even divergence if η is too large.

This problem asks you to construct a minimal counterexample illustrating this effect.

(a) Construct a minimal example (network topology, local objectives, and stepsize choice) where decen-

tralized SGD fails to converge because of strong heterogeneity and weak mixing. Clearly state your

setup and explain the mechanism behind divergence.
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(b) Suggest one or more strategies to restore convergence and justify why they work.

(c) In practice, how can one detect that such instability is occurring during training? What empirical

signals would indicate a poorly tuned decentralized system?

Question 12: Choosing Local Steps τ under Time and Heterogeneity

In federated / local-SGD style training, each communication round performs τ local gradient steps before

synchronizing across clients. Let the per-round wall time be

T (τ) = τ ccomp︸ ︷︷ ︸
local compute

+ ccomm︸ ︷︷ ︸
communication

,

so the number of rounds in time budget T is approximately N(τ) ≈ T/T (τ). A stylized expected error model

that separates optimization progress, SGD noise, and client-drift effects is

E(τ) ≈ A

ηN(τ)︸ ︷︷ ︸
optimization term

+ B η σ2︸ ︷︷ ︸
SGD noise floor

+
C

τ︸︷︷︸
mini-batch variance reduction

+ D τ︸︷︷︸
heterogeneity (drift) penalty

,

where A,B,C,D > 0 are problem-dependent constants and η is the stepsize (assumed fixed here). This

captures the trade-off: increasing τ reduces communication and the C/τ term, but increases round time and

the drift term Dτ .

(a) Give qualitative guidelines for the choice of τ in the two regimes: (i) ccomm ≫ ccomp (communication-

dominated), and (ii) ccomm ≪ ccomp (compute-dominated).
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(b) Treating τ as continuous, differentiate the smooth surrogate E(τ) ≈ A

η

T (τ)

T
+Bησ2 +

C

τ
+Dτ (using

N(τ) = T/T (τ)) and give the interior optimality condition when it exists.

(c) How does stronger client heterogeneity (non-IID data) affect the optimal τ?

Question 13: (ECE 7290 only) Unbiased Quantization in SGD

Suppose gradients are compressed by an unbiased operator Q with

E[Q(g)] = g, E
[
∥Q(g)− g∥2

]
≤ ω ∥g∥2,

for some ω ≥ 0 that increases as fewer bits are used (larger compression). Assume f is L-smooth and

(optionally) µ-strongly convex; we use mini-batch size B so the baseline gradient noise is σ2/B.

(a) Modify a canonical SGD recursion to include quantization and identify the additional variance term

in a standard expected-suboptimality bound.

(b) Discuss the trade-off between fewer bits (larger ω) and more iterations within a fixed time budget.
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(c) Which regime tolerates quantization best?

(i) Near the optimum (small gradients),

(ii) Far from the optimum (large gradients).

Question 14: (ECE 7290 only) Heavy-Ball Method and Its Stability Region

Momentum methods accelerate gradient descent by adding an extra term that reuses previous steps to gain

inertia. For a quadratic objective

f(x) = 1
2x

⊤Ax, A ≻ 0, spectrum [µ,L],

consider the heavy-ball update

xt+1 = xt − η Axt + β(xt − xt−1),

where η > 0 is the stepsize and β ∈ [0, 1) is the momentum parameter.

Intuitively, the term β(xt − xt−1) pushes the iterate further along its previous motion direction. This can

speed up convergence if tuned well, but can also cause oscillation or divergence if η or β are too large. The

goal of this problem is to analyze when the iterates xt converge for quadratic functions—i.e., to find the

stability region in the (η, β) plane.

(a) Because A is symmetric positive definite, it can be diagonalized as A = UΛU⊤. Explain why this

transformation allows us to study the update one coordinate (eigen-direction) at a time, and write the

resulting 1D recursion.

(b) The stability of this recursion depends on how errors evolve over time. The characteristic polyno-

mial captures this evolution by describing how zt depends on its past values: for a linear recurrence
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zt+1 = azt + bzt−1, the characteristic polynomial is r2 − ar− b = 0. Its roots r1, r2 describe how errors

decay or oscillate (stable if |r1|, |r2| < 1).

Write the characteristic polynomial for the heavy-ball update above and explain qualitatively what

determines stability.

(c) Using your scalar recursion, determine roughly how the stability region depends on η, β, and the largest

eigenvalue L of A. In particular, describe the range of η that keeps the updates stable.

Question 15: (ECE 7290 only) Heavy-Ball Method under Gradient Noise

In stochastic optimization, gradient noise prevents exact convergence even for convex quadratic problems.

Momentum can speed up optimization in noiseless settings but may also amplify stochastic fluctuations.

This question compares how plain GD and the heavy-ball momentum method behave under additive noise.

Setup. Consider the 1D quadratic model

f(x) = 1
2λx

2,

and assume each gradient evaluation is corrupted by additive noise:

gt = λxt + εt, E[εt] = 0, Var(εt) = σ2.

The GD and momentum updates are

GD: xt+1 = xt − ηgt, Momentum: xt+1 = xt − ηgt + β(xt − xt−1),

where η is the stepsize and β ∈ [0, 1) is the momentum parameter.

We are interested in how noise accumulates in the steady state—that is, the long-run expected value of E[x2
t ]

once transient effects vanish.

(a) For the scalar model above, derive how momentum changes the mapping from gradient noise εt to

parameter fluctuations xt. Express qualitatively (or quantitatively, if possible) how the steady-state

variance scales with β.
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(b) Explain qualitatively when momentum improves and when it degrades performance.

(c) The impact of noise on the optimization dynamics depends on the noise-to-signal ratio, roughly mea-

sured by σ2/(λ2x2
t ) or by the steady-state noise level ησ2/λ. Use this idea to reason about when

momentum is helpful or harmful in the following cases:

(i) Ill-conditioned, low-noise problems (large condition number, small σ2);

(ii) Well-conditioned, high-noise problems (small condition number, large σ2);

(iii) Ill-conditioned, moderate-noise problems.

Question 16: (ECE 7290 only) Noisy Consensus Steady State

Consider the linear consensus iteration with additive noise

xk+1 = Wxk + ξk, E[ξk] = 0, Cov(ξk) = σ2I,

where W ∈ Rn×n is a symmetric, doubly-stochastic mixing matrix: W1 = 1 and W = W⊤. Let J := 1
n11

⊤

be the projector onto the consensus subspace and P := I−J the projector onto the disagreement (mean-zero)

subspace. Write the average x̄k := 1
n1

⊤xk and the disagreement vector yk := Pxk.

Remark. Because λ1(W ) = 1, the network average follows a random walk under additive noise; a steady

state exists only for the disagreement part yk.

(a) Show that the network average is preserved in expectation but the disagreement exhibits a nonzero

variance floor. Derive the recursion for the disagreement covariance Σk := E[yk(yk)⊤] and the equation

that the covariance Σ := limk→∞ E[yk(yk)⊤] should satisfy at the steady state.
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(b) In the noisy consensus iteration

xk+1 = Wxk + ξk, E[ξk] = 0, Cov(ξk) = σ2I,

suppose W is symmetric and doubly stochastic with eigenvalues 1 = λ1 > λ2 ≥ · · · ≥ λn > −1. At

steady state, how does the disagreement variance in each eigenmode i ≥ 2 depend on λi?

Hint : Since yk+1 = Wyk + Pξk, in the eigenbasis of W , each mode i evolves as yk+1
i = λiy

k
i + ξki .

(a) Σ̃ii =
σ2

1− λi

(b) Σ̃ii =
σ2

1− λ2
i

(c) Σ̃ii = σ2(1− λ2
i )

(d) Σ̃ii = σ2λ2
i

(c) How does the spectral gap δ := 1−maxi≥2 |λi(W )| affect the steady-state level of disagreement across

the network?

(a) A larger spectral gap leads to more steady-state disagreement.

(b) A smaller spectral gap leads to less steady-state disagreement.

(c) The steady-state disagreement variance is roughly proportional to 1/δ, so smaller gaps (weaker

connectivity) yield larger disagreement.

(d) The spectral gap does not affect disagreement in steady state.
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